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ABSTRACT
Caregivers play an outsized role in shaping early life experiences and development, but we often lack mechanistic insight into
how exactly caregiver behavior scaffolds the neurodevelopment of specific learning processes. Here, we capitalized on the fact that
caregivers differ in how predictable their behavior is to ask if infants’ early environmental input shapes their brains’ later ability
to learn about predictable information. As part of an ongoing longitudinal study in South Africa, we recorded naturalistic, dyadic
interactions between 103 (46 females and 57 males) infants and their primary caregivers at 3–6 months of age, from which we
calculated the predictability of caregivers’ behavior, following caregiver vocalization and overall. When the same infants were 6–
12-months-old they participated in an auditory statistical learning task during EEG.We found evidence of learning-related change
in infants’ neural responses to predictable information during the statistical learning task. The magnitude of statistical learning-
related change in infants’ EEG responses was associated with the predictability of their caregiver’s vocalizations several months
earlier, such that infants withmore predictable caregiver vocalization patterns showedmore evidence of statistical learning later in
the first year of life. These results suggest that early experiences with caregiver predictability influence learning, providing support
for the hypothesis that the neurodevelopment of core learning and memory systems is closely tied to infants’ experiences during
key developmental windows.

1 Introduction

Early life is marked by rapid learning and neurodevelopment,
both of which are profoundly influenced by our experiences.
Experiences during this window guide what we learn, and
influence how we learn. While our primary caregivers clearly
play an outsized role in shaping our early life experiences and
development, we often lack mechanistic insight into how exactly

their behavior scaffolds the neurodevelopment of specific learn-
ing processes. Here, we capitalized on the fact that caregivers
differ in the predictability of their behavior to test the idea that
more predictable early environmental input trains an infant’s
later ability to learn about predictable information.

Variability in caregiver behavior is a major influence on child
developmental outcomes, and thus likely on infant learning. As
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Summary
∙ Caregiver predictability during dyadic interaction pre-
dicted neural responses during statistical learning 5
months later.

∙ The longitudinal relationship between caregiver pre-
dictability and neural responses during statistical learning
was most evident in the same sensory modality.

∙ These results show that differences in infants’ early expe-
riences shape the neurodevelopment of relevant learning
and memory systems early in life.

∙ These results extendmuchworkwithWestern populations
to an ecologically valid, and historically under-represented
African context.

one example, caregivers show variation in the predictability of
their long-term and moment-to-moment behavior (see Davis and
Glynn 2024; Ugarte and Hastings 2023; Young, Frankenhuis,
and Ellis 2020, for recent reviews), with documented impacts
on offspring development across species (Davis et al. 2017, 2019,
2022; Demaestri et al. 2022). In humans, moment-to-moment
caregiver predictability influences both child psychopathology,
where less predictable caregiver signals precede negative mental
health outcomes in children (e.g., Davis and Glynn 2024), and
cognitive development, including effortful control in 2-year-olds
(Holmberg et al. 2022), and memory performance in 6-year-
olds (Davis et al. 2017). Such moment-to-moment predictability
has been studied in multiple global contexts (although to our
knowledge, not yet in an African setting, as we do here),
implying the predictability of infants’ early sensory input may
be a globally ubiquitous predictor of later development (Aran
et al. 2024; Klein and Feldman 2007; Montirosso et al. 2010).
We reasoned that a mechanistic possibility explaining these
links between cognitive development and caregiver predictability
is that early experience with predictable information teaches
infants to attend to (Munakata, Placido, and Zhuang 2023;
Suarez-Rivera, Smith, and Yu 2019; Yu and Smith 2016) and
thus learn from predictable information, thereby shaping learn-
ing and memory systems in the brain while they are highly
malleable.

One learning process that might be especially shaped by the
regularity of our experiences, including the predictability of
caregiver input, is statistical learning or learning about the
statistically predictable information in our environment (see
Aslin 2017; Johnson 2020; Saffran 2020; Saffran and Kirkham
2018 for recent reviews on statistical learning in infancy). Seminal
work indicated that infants can use only the statistical properties
of their auditory input to support language learning. Specifically,
Saffran, Aslin, and Newport (1996) demonstrated that after 8-
month-old infants listened to an artificial language with no
breaks between “words,” they adjudicated between a series of
syllables that predictably appeared together (a “word”) and a
series of syllables which had appeared together less predictably.
Subsequent investigations have demonstrated that learners of all
ages (Campbell et al. 2012; Fló et al. 2019, 2022; Saffran et al. 1997;
Teinonen et al. 2009) can use the regularities naturally present
in their environment to track statistical patterns across sensory

domains highlighting the broad importance of this learning
mechanism (Conway and Christiansen 2005; Fiser and Aslin
2002; Kirkham, Slemmer, and Johnson 2002; Saffran et al. 1999).
Although there are both individual differences (Siegelman and
Frost 2015) and developmental changes in statistical learning
(Forest, Abolghasem, et al. 2023; Forest, Schlichting, et al. 2023;
Jung,Walther, andFinn 2020; Raviv andArnon 2018), this process
is well-known to support much of the environmental learning
which pervades early life, and predicts later behaviors such as
reading ability (Arciuli and Simpson 2012; Spencer et al. 2015) and
linguistic performance (Boeve, Zhou, and Bogaerts 2023; Kidd
andArciuli 2016;Misyak andChristiansen 2012; Shafto et al. 2012;
Singh, Reznick, and Xuehua 2012).

Notably, statistical learning is shaped by prior experience
with statistical regularities—both on relatively short and long
timescales—making it a prime candidate for understanding how
differences in caregiver experience shape learning. For instance,
adults shift their attention to successively more complex sta-
tistical regularities as they gain experience in an environment
(Forest et al. 2022), and infants look at the location of a display
that is most informative for their learning at any point in
time based on their prior experience (Poli et al. 2020). Prior
learning of environmental regularities over longer timescales
also shapes future statistical learning. For example, adults fail to
learn statistically when an artificial language conflicts with the
statistics of their native language (Finn and Hudson Kam 2008),
potentially because prior learning of one set of statistics inhibits
attending to, or learning about, a different distribution of sounds
down the line (Bulgarelli and Weiss 2016; Gebhart, Aslin, and
Newport 2009). This phenomenon has been well documented in
language learning,where the early ability to differentiate between
non-native phonemic contrasts disappears by the end of the first
year of life, once infants have had extensive experience with the
statistics of their own language (Maurer andWerker 2014;Werker
and Hensch 2015; Werker and Tees 1984). Collectively, these
examples highlight that our statistical experiences guide what
we learn in the moment, and form the foundational knowledge
which guides later learning (see also Amso and Kirkham 2021;
Forest and Amso 2023).

Crucial for the hypothesis that experience with statistical
regularities shapes the underlying neural systems used for future
learning, variability in statistical learning performance has also
been shown to relate to variability in neural development. In
children, the thickness of the inferior frontal gyrus (Finn et al.
2019) and size of the hippocampus (Finn et al. 2019; Schlichting
et al. 2017) relate to statistical learning performance. Evidence
from electroencephalography (EEG) tasks demonstrates that the
extent towhich 6-month-old infants’ (Choi et al. 2020) and adults’
(Batterink and Paller 2017, 2019) neural oscillations align with
the frequency of predictable auditory information relates to their
later knowledge of a statistical structure. Initial evidence further
suggests that variability in maternal experiences, like stress,
relate to the way that toddlers’ brains respond to predictable
information during a statistical learning task (Pierce, Carmody
Tague, and Nelson 2021). These examples suggest that variability
in the psychological experiences that relate to statistical
learning performance could also shape the neural substrates
used for later learning, but this link has yet to be directly
investigated.
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Here, we tested the idea that relevant, regular early experiences
shape the operation of core learning processes when these
systems are highly malleable in the infant brain, by asking if
natural variability in caregivers’ predictability shapes infants’
subsequent statistical learning months later. To do this, we
recorded naturalistic, dyadic interactions between 2- and 6-
month-old South African infants and their primary caregiver
which we used to calculate the entropy of caregiver behavior as
a measure of unpredictability (Davis et al. 2017). Approximately
5 months later (near the end of the first year of life), we
recorded continuous EEG while the same infants completed
an auditory statistical learning task. Following past research
(Pierce, Carmody Tague, and Nelson 2021), we compared neural
responses to predictable and unpredictable auditory information
during the task. Finally, we longitudinally related both care-
giver entropy following the behaviors in the matching modality
(auditory) and overall caregiver entropy to differences in infants’
neural responses to predictable versus unpredictable auditory
information later in the first year of life.

2 Methods

2.1 Participants

2.1.1 Cohort Study Description

The data presented herein were collected as part of an ongo-
ing longitudinal study, designed to chart the development of
executive function from 0 to 1000 days, in an African context
typically under-represented in developmental and psychological
research. As part of the longitudinal study, familieswere recruited
through health clinics in Gugulethu, an informal settlement near
Cape Town, South Africa, to participate in prenatal and (five)
postnatal visits. Local universityHealth ResearchEthics Commit-
tees approved all protocols. These protocols varied by timepoint,
but included medical assessments, magnetic resonance imaging
(MRI), rest and task-based EEG, and behavioral questionnaires
(see Zieff et al. 2024, for complete longitudinal protocol). Before
participating, caregivers provided informed consent on behalf of
themselves and their infant in the family’s preferred language.

2.1.2 Current Sample

Ourmain research questionwas how the predictability of infants’
early caregiver interactions might shape the ongoing brain
development of relevant learning systems. Thus, we explored
the relationship between caregiver entropy during naturalistic
caregiver–infant interactions at the first postnatal visit (“Visit
One,” approximately 4 months after infants were born) and EEG
responses during statistical learning at the second postnatal visit
(“Visit Two,” approximately 9 months after infants were born,
see Table 1). Of the families who participated in the larger study,
262 participated in the caregiver–infant interaction session at
Visit One. Most often, the caregiver present at this visit was
the infant’s mother. A total of 183 families participated in the
EEG statistical learning task at Visit Two. Of these, 129 infants
provided usable EEG data (see Supplementary Material, “EEG
Data Quality Control Procedure”). The overlap of subjects who
participated in both the caregiver–infant interaction task at Visit

One, and had usable statistical learning EEG data from Visit Two
was 103 subjects (MAge Visit One = 3.8 months, SD = 0.8 months,
range= 2–5.8months;MAge Visit Two = 9.1months, SD= 1.4months,
range= 6.3–12.0months). For all analyses, we present resultswith
the largest sample size possible. For example, when reporting
EEG results from the statistical learning task, we report results
from all 129 participants with EEG data, rather than just the 103
subjects for whomwe also had caregiver entropy data (see Table 1
for sample size information andTable 2 for family demographics).

2.1.3 Sample Size Justification

The most computationally intensive analysis we ran, and the
analysis for which we had the fewest number of subjects, was to
analyze the longitudinal relationship between caregiver entropy
at Visit One and neural measures of statistical learning at Visit
Two. Specifically, we planned to run a linear model that included
seventeen total predictors (this encompasses five main effects
terms, their two- and three-way interactions, and one additional
control term; see Section 2.4). A power analysis (run in G*Power,
Faul et al. 2007) indicated achieving 80% power in detecting a
medium-sized effect (f2 = 0.15) in this model would require a
sample of at least 95 participants. Thus, the 103 subjects’ data
we analyzed here surpass the minimum sample size required for
medium and large effects.

2.2 Caregiver Predictability Metrics

2.2.1 Caregiver-Infant Interaction Recordings

To measure the entropy of infants’ early interactions with their
primary caregiver, we recorded infants and their caregivers
during naturalistic, dyadic interaction for about 5 minutes during
Visit One. Caregivers were instructed to play with their infants
as they would at home in a quiet, private space in the testing
center. This space held three tripods, each with a Logitech C920
Pro HD Webcam camera. One camera directly faced the infant,
one faced the caregiver, and the final camera captured a side view
of the dyad. The video and audio signals from each computer
were temporally aligned using ManyCam (https://manycam.
com/) during the recording session.

2.2.2 Hand-Annotation of Caregiver Behavior

Following data collection, we hand-annotated caregiver behavior
in Datavyu (Datavyu Team 2014), following a protocol used
previously to characterize moment-to-moment caregiver behav-
iors (Davis et al. 2017), and which can be referenced in full
in their Supporting Information for readers who wish to adapt
this approach to their work. This protocol involves frame-by-
frame annotating of the onset and offset of each instance of five
caregiver behaviors which can be processed by infants’ sensory
systems: vocalizing (auditory signal), holding the baby, touching
the baby (tactile signals), holding an object in the room, and
pointing (visual signals). Alongside these five caregiver behaviors,
we also annotated infant eye-gaze toward the caregiver as a
measure of infant attention, which we included as a covariate in
relevant analyses.
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TABLE 1 Sample size and number of included subjects for each task.

Task
Completed

task Useable data
Mean age in months

(useable data)

Caregiver-interaction recording (Visit One) 262 255 (118 F, 137 M) 3.8 (range: 2–5.8)
Statistical learning during EEG (Visit Two) 183 129 (60 F, 68 M) 9.1 (range: 6.3–12)
Overlap in final sample — 103 (46 F, 57 M) 5.2 (between Visits One and Two)

TABLE 2 Family demographic characteristics.

Visit One
(N = 256)

Visit Two
(N = 129)

Longitudinal
sample (N = 103)

Maternal place of birth
South Africa 250 126 101
n the African continent (not South
Africa)

5 2 2

Missing 1 1 —
Primary spoken language
Xhosa 246 125 100
English 3 — —
Sotho 2 1 1
Afrikaans 2 1 1
Shona 1 1 1
Ndebele 1 — —
Missing 1 1 —

Maternal age (in years) at infant birth
Mean (SD) 28.9 (5.8) 29.2 (5.8) 29.5 (5.9)
Median [Min, Max] 28.7 [18, 44.1] 29.0 [18, 44.1] 29.1 [18, 44.1]
Missing 1 1 —

Maternal educational attainment
Completed Grades 6–7 6 4 4
Completed Grades 8–11 114 62 49
Completed Grade 12/High school 103 45 37
Some postsecondary education 20 9 8
Completed postsecondary education 12 8 5
Missing 1 1 —

Household monthly income (South African Rand, ZAR)a

<R1000 48 24 20
R1000–R5000 115 56 44
R5000–R10,000 59 29 24
>R10,000 12 4 4
Missing or unknown 22 16 11

aAt the time of writing (March 19, 2024), 1 United States Dollar (USD) = 18.68 South African Rand (ZAR).

Operationally, this annotation was completed offline for each
video. First, each video was evaluated for image resolution and
audio clarity. Then, each behavior was annotated, one at a time
by trained annotators (e.g., caregiver vocalizing was marked
first, and infant eye-gaze was annotated completely separately).

This approach serves two important functions. First, annotating
each behavior separately helps to avoid mistakes in annotation.
Second, it ensures any relationships observed between different
caregiver behaviors reflect real co-occurrence of these behav-
iors, rather than annotators’ interpretations of co-occurrence.

4 of 15 Developmental Science, 2024
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FIGURE 1 Measuring caregiver predictability. (a) Caregiver–infant interactions were recorded from three cameras which were aligned temporally
before hand-annotating five caregiver behaviors (hold object, hold baby, touch baby, vocalizing, and pointing) and one infant behavior (looking) on
each frame of the video. On each frame (y-axis of the table), the presence or absence of each behavior (x-axis of the table) was marked (colored check
marks in each box), resulting in a frame-by-frame annotation of caregiver behavior. (b) These annotation matrices were then transformed into Markov
models, capturing the probability of a caregiver transitioning from one behavioral state to another. Markov models were generated independently for
each caregiver, and could be used to understand how predictable her behavior was by examining the transitional probability from one behavioral state to
any other. Panel (b) shows an example calculation of the predictability for the caregiver in Panel (a) from behavioral states which include each behavior
to states which include each other behavior. For example, following frames in which the caregiver was vocalizing (green outline, first column), she
transitioned to a behavioral state that included Holding an object twice (40% of the time), Holding her baby twice (40% of the time), Touching her baby
twice (40% of the time), Vocalizing three times (60% of the time), and Pointing twice (40% of the time). Note that these probabilities were calculated for
specific behavioral stateswhich could be either single behaviors or combinations of behaviors (i.e., what proportion of the time did a caregiver switch from
“Touching Baby andVocalizing” to “Holding baby andVocalizing”), but for simplicity in the figurewe have collapsed the transitional probabilities across
all states involving each behavior rather than listing them separately. Thickness of arrows reflects strength of the transition; color of arrows indicates
the behavior present in the state the caregiver transitioned to. These transitional probabilities were then fed into the standard calculation for Shannon
Entropy, using all possible behaviors (Blue Background, “Overall Entropy”), or just based on the transitions following behavioral states in which the
caregiver was Vocalizing (Green Background, “Entropy Following Vocalizing”). (c) Entropy (x-axis) was computed for every caregiver both overall and
following vocalizing (y-axis, color). There was no difference in the distribution of entropy values by entropy type (overall or following vocalizing). Dots
represent individual caregivers, box-plots represent the median and interquartile range (excluding outliers), and shading represents density of caregiver
entropy values along the x-axis.

Instances of the same behavior less than 500 ms (holding baby,
touching baby, holding an object, or pointing) or 1000 ms apart
(vocalizing and infant eye-gaze) were identified as a single event,
and behaviors occurring further apart in time were annotated as
separate occurrences. The intervals for vocalizing were chosen
to be 1000 ms based on past work (see Davis et al. 2017), and
because there were some instances of caregiver vocalizing in our
data which included pauses longer than 500 ms while still being
part of the same utterance. The interval for separate infant eye
movements was likewise set to 1000 ms to account for the fact
that at 4-months the infant visual system still requires more time
to plan and execute eye movements than later in life. If any
behavior was unclear, this time point was marked as “unknown”
and excluded from analysis (caregiver behavior was not codable
1.54% of the time on average, and infant behavior was not codable
2.93% of the time on average). This process resulted in a frame-
by-frame (33 Hz) annotation which reflected the occurrence and
duration of caregiver actions and infant attention toward the
caregiver (Figure 1a).

To ensure annotations were consistent across our sample, we
trained each new annotator until their annotations matched
an experienced annotator’s with at least 85% accuracy in eight
training videos. For these videos, the accuracy match was

computed for each behavior separately using an automatic
process built-in to DataVyu. If a training annotator did not
match the experienced annotators’ annotations the trainee
was re-trained and re-annotated that behavior in all videos
until this match was achieved. We also confirmed continued
inter-annotator reliability across our seven total annotators by
implementing a quality control procedure on a subset (10%) of
all videos. These videos were annotated by two people instead
of one. If the inter-annotator reliability was less than 80% for
any caregiver or infant behavior, the behavior of concern was
re-coded in all videos that had been annotated by the discrepant
annotator (note that this happened just once, where one person’s
annotations of “holding baby” clearly deviated from the other
annotators’). The final inter-annotator reliability for this 10% of
videos resulted in a Cohen’s Kappa of 0.75, which reflects high
inter-rater reliability (McHugh 2012).

2.2.3 Calculating the Entropy of Caregiver Behavior

Our hand-annotation process resulted in a data frame that
detailed the presence and timing of five caregiver behaviors and
infant eye-gaze toward the caregiver for the entire naturalistic
interaction (Figure 1a). We then assigned each timepoint a
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behavioral “state” which reflected the caregiver behavior(s) that
were active at that time. A state could reflect the caregiver doing
either zero, one, or multiple behaviors. For example, a caregiver
might have been holding her baby (one state), and then switch to
vocalizing while touching her baby (a second state, e.g., “Frame
1” in Figure 1a).

We then used this sequence of states to model the entropy of
caregiver behavior (e.g., how predictably does she transition
from vocalizing to touching her baby?) by constructing Markov
models representing the transitions from one behavioral state to
another. Figure 1b illustrates example transitional probabilities
for the behaviors visualized in Figure 1a, collapsed across all
behavioral states that include the caregiver behavior of interest to
behavioral states with every other caregiver behavior, rather than
separately listing all possible behavioral states (i.e., the transi-
tional probabilities visualized for “Vocalizing” reflect that this
Caregiver transitioned 40% of the time to a behavioral state that
included “Holding an object,” rather than that she transitioned
40% of the time to only “Holding an object”). These models
allowed us to quantify the consistency of caregiver transitions
using the formula for Shannon Conditional Entropy (denoted
as𝐻(𝑌|𝑋) = ∑

𝑥∈𝑋,𝑦∈𝑌
𝑝(𝑥, 𝑦)(𝑙𝑜𝑔

𝑝(𝑥,𝑦)

𝑝(𝑥)
). This formulamodels the

uncertainty in transitioning from one state to another, given the
frequency of all states and the transitions between them (Davis
et al. 2017; Vegetabile et al. 2019). The resulting outcome, termed
“conditional entropy,” indicates how unpredictable a caregiver’s
next action is, based on her current state (i.e., how likely is it that
a caregiver will transition to “Holding baby while Vocalizing” if
she is currently “Touching the baby”). In other words, the higher
the entropy of a caregiver’s behavior, the less predictable she was.
We calculated both the overall entropy of caregiver behavior, by
including all possible states in the entropy calculation (Figure 1b,
blue; i.e., averaging the predictability of her transitions from any
behavioral state to any other), and entropy following caregiver
vocalizing alone, by restricting our calculation of conditional
entropy to only include transitions following caregiver vocalizing
(Figure 1b, green). Because behaviors can also occur in tandem,
we chose to include any state which includes vocalizing in this
calculation, rather than states where the caregiver was only
vocalizing. Of note, these calculations mean that the measure of
predictability we are using reflects transitions between behavioral
states, like switching from vocalizing to touching the baby, or
from vocalizing while touching the baby to holding an object,
rather than the predictability of the auditory information itself,
as is more typically done in statistical learning research. This data
processing was done with custom Python (version 3.9) scripts via
Jupyter Notebook (Kluyver et al. 2016).

2.3 Statistical Learning During EEG

2.3.1 EEG Data Acquisition

EEG data at Visit Two were recorded while infants sat on their
caregiver’s lap in a dimly lit, quiet room. EEG data were collected
using high-density (128-channel) HydroCel Geodesic Sensor Nets
(MagstimEGI,Whitland,UK). Netswithmodified taller (9.3mm)
pedestals designed for improving the inclusion and experience
of infants with curly, coiled, and/or coarsely textured hair were

used as needed (Mlandu et al. 2024). EEG data were recorded
at a sampling rate of 1000 Hz and online referenced to the
vertex (channel Cz) via NetStation 5.4 software (Magstim EGI)
connected to a Net Amps 400 Series high-input impedance
amplifier. Impedanceswere aimed to be kept below 100KΩunder
the impedance capabilities of the amplifier.

2.3.2 Statistical Learning Task

The auditory statistical learning task we used was adapted from
prior research in toddlers (Pierce, Carmody Tague, and Nelson
2021), and similar to many prior statistical learning studies
(especially Kudo et al. 2011; Saffran et al. 1999 which used the
same auditory stimuli). The taskwas presented via E-prime 3.0 on
a Windows 10 Pro PC. During the task, an experimenter silently
blew bubbles, played a silent video, or showed toys to the infants
to keep them calm and engagedwhile the auditory stimuli played.

The statistical learning task presented infants with a series of
12 unique pure tones, one at a time, for approximately 7 min
(Figure 2a). Each tone lasted 50 ms, with no ISI (0 ms). Although
tones sounded one-at-a-time, theywere presented in a statistically
predictable order. Specifically, tones were grouped into sets of
three, which formed tone “triplets” (tone triplets were F#A#D;
CG#C#; EGD#; AFB).Within a triplet, the tones always appeared
in the same order (e.g., F# always preceded A#, which always
preceded D). Triplets then appeared in a pseudo-random order
such that no triplet followed itself. Three of the triplets appeared
80 times each during the task, and one of the triplets appeared 40
times during the task. In all cases, the triplets appeared an equal
number of times in the first and second half of the task (40×/half
for frequent triplets, 20×/half for the infrequent triplets). Thus,
the transitional probability for tones within a triplet (e.g., F# →
A#, or A# → D) was 1.0, while the transitional probability for
tones spanning a triplet boundary (e.g., D → C) was 0.33 (note,
this is true despite one triplet appearing half as often as the
others). There were no breaks between triplets that could have
indicated any grouping structure to participants. Thus, if infants
in our sample show evidence of having learned the relationship
between tones, this must be due to the statistical pattern in the
order they were played.

Most statistical learning studies rely on a separate test phase (see
Batterink et al. 2015; Liu et al. 2023; Siegelman, Bogaerts, and
Frost 2017 for discussions), completed after exposure to structured
information, to test participants’ knowledge of the statistics they
experienced. That said, a growing number of studies have relied
on neural measurements to understand the statistical learning
process as it unfolds (Batterink and Paller 2017, 2019; Batterink
and Zhang 2022; Koelsch et al. 2016; Sanders, Newport, and
Neville 2002; Sanders, Ameral, and Sayles 2009; Soares et al. 2020,
2022), especially in young learners (e.g., Choi et al. 2020; Fló et al.
2022; Kabdebon et al. 2015). We likewise relied directly on EEG
data collected during the exposure phase as our neural measure
of infant learning. Specifically, we capitalized on the fact that if
infants learned the structure of the tone stream, some of the tones
would become predictable (the 2nd and 3rd tones in a triplet) after
having heard the first tone. The first tone, on the other hand,
would remain unpredictable, since any triplet could follow the
third tone of the previous triplet (Figure 2b). Past research (Pierce,
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FIGURE 2 Statistical learning task and measurement. (a) Statistical learning task structure. Infants were exposed to a continuous stream of 12
tones which each played for 550 ms. These tones were secretly grouped into four “tone triplets” (shaded panel), such that within each triplet tones
always appeared in the same order. These triplets then appeared in a pseudo-random order for about 7 min, with the caveat that no triplet immediately
followed itself. Three of these triplets (F#A#D; CG#C#; EGD#) appeared 80× during the course of the task, while one triplet (AFB) appeared half as
frequently (40× during the task). (b) Indexing statistical learning in infants via EEG responses. EEG was recorded during the statistical learning task, to
compare ERP responses to unpredictable (e.g., First position tones, like Tone F#, Navy ERP wave) and predictable tones (e.g., Second and Third Position
tones, like Tone A# and D, pink dashed ERP wave) over the course of learning. Past research has indicated that two ERP features differ as a function
of tone predictability: N1 latency (earlier for predictable) and P2 amplitude (higher for predictable). The example ERP figure is adapted from Pierce,
Carmody Tague, and Nelson (2021), and reflects ERP responses (in microvolts, y-axis) across time (in milliseconds, x-axis).

Carmody Tague, and Nelson 2021) has demonstrated that two
ERP features, namely the latency of the N1 and the amplitude of
the P2 differ as a function of whether a tone is predictable or not
in this statistical learning task. In particular, the N1 is thought to
reflect auditory detection and discrimination (Tomé et al. 2015),
while the P2 may reflect learning more specifically (Tremblay
et al. 2014) and has been shown to increase as a function of
stimulus predictability (Picton 1992). Thus, by recording EEG,
which has an appropriate temporal resolution for measuring
responses on the sub-second level, we could ask whether there
were differences in neural responses to predictable compared
to unpredictable tones which emerged after infants had the
opportunity to learn about the structure of the tone sequence.

2.3.3 EEG Data Processing

EEG data were preprocessed using the Harvard Automated
Processing Pipeline for EEG (HAPPE), an automated
preprocessing software designed for infant EEGdata (HAPPE and
HAPPE+ER; Gabard-Durnam et al. 2018; Monachino et al. 2022).
The HAPPE+ER pipeline with Version 4 of HAPPE software
was run using MATLAB (2022b) and EEGLAB (2022.0, Delorme
and Makeig 2004). Preprocessing parameters are available in
Table S1. Prior to any data preprocessing, we removed electrodes
from the outer rim of the net and eye electrodes (electrodes
E125, E126, E127, E128, E48, E119, E43, E49, E56, E63, E68, E73,
E81, E88, E94, E99, E107, E113, E120, E44, E38, E32, E25, E21,
E14, E8, E1, E121, E114, and E17), which is common practice in
infant EEG research (see Monachino et al. 2022). Electrical line
noise at 50 Hz was removed using CleanLine (Mullen 2012) via
a multi-taper regression, and data were filtered with a 0.5–30 Hz
finite impulse response (FIR) bandpass filter. Bad channels were
detected using HAPPE’s automated algorithm. Data were then
artifact corrected via wavelet-thresholding. The continuous data
were then segmented into epochs spanning the presentation
of each stimulus (100 ms before until 550 ms after the onset of
each tone), and were baseline corrected by the average over the
prestimulus period (−100 to 0ms). Any segments with remaining
artifact were removed using amplitude based (± 200 uV) and joint
probability criteria. Bad channels were interpolated via spherical

spline interpolation and data were rereferenced to the average
reference.

As we were primarily interested in understanding how
EEG measures of statistical learning related to infants’ early
experiences, rather than understanding how learning progressed
differently for frequent versus less frequent stimuli, we restricted
our analyses to the frequent triplets. We also excluded any
participant with fewer than 10 epochs remaining for any tone
position in the first or second half of the study (i.e., Positions 1,
2, or 3 tones; see Supplementary Material for a full description
of EEG data quality control procedure). Preprocessed EEG data
were then run through the generateERPs script (HAPPE+ER;
Monachino et al. 2022) to extract event-related potentials (ERPs)
for each tone. Data were extracted and averaged from 11 frontal
electrodes (E3, E4, E11/Fz, E19, E23, E24/F3, E27, E28, E117,
E123, and E124/F4; Figure S1) based on prior research (Pierce,
Carmody Tague, and Nelson 2021) and visual inspection of the
data. ERP features were generated separately for each tone
position (Positions 1–3), and for each half of the experiment
(first and second half), in each participant. Peak amplitude
and peak latency were extracted for the N1 (30–100 ms) and P2
(100–300 ms) components. The grand average waveforms were
then manually inspected to confirm that the peak of each ERP
component occurred in the time windows we had prespecified.
We then calculated a corrected P2 amplitude which accounted
for the N1 amplitude, and a corrected P2 latency which accounted
for the N1 latency, as is common in the literature (Conte et al.
2020; Conte and Richards 2021; Hoehl and Wahl 2012).

2.4 Analysis Plan and Rationale

Our central research question was whether or not early expe-
rience with highly predictable (i.e., low entropy) input would
shape neural engagement during future learning of predictable
information. Thus, we analyzed caregiver entropy data from
Visit One, EEG responses to predictable versus unpredictable
information during statistical learning at Visit Two, and their
relationship to one another. All analyses were carried out in R
(version 4.2.3, R Core Team 2021).
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First, we confirmed that caregiver entropy at Visit One differed
across caregivers using measures of central tendency. Entropy
scores can range from 0 (reflecting perfectly predictable
behavior) to a theoretically infinite maximum based on the total
number of behavioral states included in the calculation. Our
sample had entropy scores ranging from 0 to 2.13 (SD = 0.43),
suggesting sufficient variability existed for further analysis. As
some evidence suggests that statistical learning develops on
different timelines in different sensory modalities (Raviv and
Arnon 2018; Shufaniya and Arnon 2018), and that individual
differences in statistical learning are only weakly correlated
across modalities (Siegelman and Frost 2015), we reasoned that
the particular sensory learning system tapped during the learning
task (auditory, in this case), might be most related to experience
with predictability in the relevant sensory domain. Thus, we also
compared caregiver entropy following vocalizing (i.e., entropy
following behaviors in the matching sensory modality) with
overall caregiver entropy using a paired-sample t-test to test
whether these scores differed sufficiently enough to separately
relate both measures to later learning.

Next, we asked whether there was evidence of statistical learning
in the EEG data at Visit Two, as measured by different ERP
responses to predictable tones and unpredictable tones. Although
the tones used here have been used tomeasure statistical learning
in infants (Kudo et al. 2011; Saffran et al. 1999) and toddlers
(Pierce, Carmody Tague, and Nelson 2021), we needed to confirm
there was evidence of sensitivity to statistical structure in these
data before investigating any potential relationshipwith caregiver
entropy. As mentioned, prior work with this task has indicated
that the N1 latency and the P2 amplitude differ as a function
of where in a statistical triplet the tone is positioned (Pierce,
Carmody Tague, and Nelson 2021). We reasoned that if these
differences reflect learning, they should emerge during the second
half of the task. Thus, we fit two linear mixed-effects models to
test for statistical learning in the EEG signal. These models were
fit using the lme4 package (Bates et al. 2015) and are reported
using the Anova() function from the Companion to Applied
Regression (“car”) package (Weisberg 2019). Our first model
predicted N1 latency as a function of tone predictability (position
1 tone are “unpredictable” while Positions 2 and 3 tones are “pre-
dictable”), half (first and second), and age at EEG (continuous in
days andmean-centered) as fixed effects, as well as their two- and
three-way interactions. This model also included the percentage
of EEG segments retained following preprocessing to account
for potential effects of data quality, and random by-subjects
effects of half and tone predictability. Second, we ran a parallel
model to examine any effects on P2 amplitude (adjusted for N1
amplitude). Although N1 latency and P2 amplitude have been
used in prior statistical learning work and thus comprised our
central analyses, we also ran similar models for N1 amplitude and
P2 latency (adjusted for N1 latency). These models did not show
any clear signs of learning-related change across our sample, and
are therefore presented in the Supplementary Material.

Finally, we asked whether caregiver entropy would shape neural
responses to statistical information down the line. To do this, we
calculated an “EEG statistical learning score” by subtracting each
infant’s ERP responses to unpredictable (Position 1) tones from
the average of their ERP responses to predictable tones (i.e., Posi-
tions 2 and 3 tone responses were averaged), in the second half of

learning. This provided us with a measure of how much infants’
neural responses to tones differed as a function of predictability,
after infants had the opportunity to learn their statistical struc-
ture. We then ran two linear models to examine whether this
learning score related to caregiver entropy. One of these models
predicted the EEG learning score as a function of infant age at
Visit One (during the caregiver interaction), caregiver entropy
following vocalizing (mean centered), the frequency of caregiver
vocalizing, how much the infant looked at their caregiver during
the interaction, and the two- and three-way interactions of these
terms. The model also accounted for data quality in the EEG
signal and infant age at Visit Two (during the EEG task). Infant
looking was included in this model to account for the possibility
that the extent to which an infant attends to their caregiver would
moderate the relationship between her predictability and later
learning. The frequency of caregiver vocalizing was included to
account for the possibility that the total amount of caregiver
vocalizations, rather than the predicable structure present follow-
ing vocalizing, would relate to auditory statistical learning. We
included infant age at Visit One to account for the possibility
that how old an infant was when we measured their interactions
with their caregiver might account for some variability in how
the caregiver behaved. We also included infant age at Visit Two
(during EEG) to ensure that any differences observed in the EEG
index of learning were not simply attributable to age differences
in the EEG signal. The second model was identical but replaced
caregiver entropy following vocalizing with overall caregiver
entropy (mean-centered) and removed the vocalization frequency
term to understand the specificity of any observed effects from the
auditory entropy model.

As some past work (mostly with Western samples) has reported
correlations between sociodemographic variables and caregiver
predictability across longer timescales,we also examinedwhether
there were correlations between such variables and caregiver
entropy following vocalizing in our sample thatmight account for
variability in later learning. Therewere no significant correlations
between caregiver age at enrollment (r = 0.11, t(229) = 1.62, p =
0.11), caregiver educational attainment (r = 0.09, t(229) = 1.38,
p = 0.17), nor household income (r = −0.06, t(229) = −0.93,
p = 0.35), and caregiver entropy following vocalizing. These
variables were also not correlated in the subset of participants
for whom we had both caregiver entropy following vocalizing
measures at Visit One and EEG measures of statistical learning
at Visit Two (entropy and caregiver age, r = 0.11, t(96) = 1.07, p =
0.29; entropy and caregiver educational attainment, r= 0.03, t(96)
= 0.32, p = 0.75; entropy and household income, r = −0.006, t(96)
= −0.06, p = 0.95). Thus, we did not include sociodemographic
covariates in our models, to conserve as much power as possible
given our sample size.

3 Results

3.1 Entropy Varies Across Caregivers

Our first analysis examined the consistency of caregiver entropy.
This analysis served both to describe naturalistic behavior in our
sample and to confirm that there was sufficient variability to
ask how this early signal related to later learning. As in prior
characterizations of this population (Forest et al. 2024), there
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FIGURE 3 Raw ERP waveforms for each Tone Position in the (a)
first and (b) second half of the experiment. The amplitude (y-axis) of EEG
response at each millisecond (x-axis) for each tone position (color; 1st
position tones, dark blue; 2nd position tones, orange; and 3rd position
tones, pink). Colors match the example Tone Triplet in Figure 2b.

was a wide range of entropy across caregivers both following
vocalizing (M = 1.01, SD = 0.50, range = 0.00–2.13) and overall
(M= 1.02, SD= 0.36, range= 0.00–1.72). There was no significant
difference in entropy following vocalizing and overall entropy
(t(232) = −0.91, p = 0.37, Cohen’s d = 0.05, Figure 1c), and
these behaviors were moderately correlated (r = 0.66, t(229) =
13.35, p < 0.001). This correlation suggests that there is within-
dyad consistency across predictability in one sensory domain and
general predictability, but that there is still sufficient divergence
in these metrics to examine the effect of each on later auditory
statistical learning.

3.2 P2 Amplitude Shows Evidence of
Learning-Related Change

Next, we examined ERP responses to predictable and
unpredictable tones across both halves of the experiment. The
rawERPwaveforms are plotted in Figure 3. Our first ERP analysis
examined if ERP N1 component responses during the statistical
learning task, whichmay reflect the detection and discrimination
of auditory inputs, differed as a function of tone predictability.
The results of ourmodel (described in Section 2.4) indicated there
were no main effects of tone predictability (𝜒2

1 = 0.25, p = 0.61),
half of the learning task (first or second; 𝜒

2
1 = 0.26, p = 0.61),

age (𝜒2
1 = 0.003, p = 0.96), or EEG data quality (𝜒2

1 = 0.08, p =
0.78) on N1 latencies. There were also no interactions between
age and tone predictability (𝜒2

1 = 0.83, p = 0.36), age and half
of learning (𝜒2

1 = 0.02, p = 0.90), and no three-way interaction
between age, half of learning, and tone position (𝜒2

1 = 0.01, p
= 0.92). These results suggest no difference in the N1 response
to predictable tones as a function of statistical experience
(Figure 4a).

We then asked whether the amplitude of the P2 component
(adjusted for N1 amplitude) differed by tone predictability. As
for N1 latency, there were no main effects of age (𝜒2

1 = 0.81,
p = 0.37), half of learning (𝜒2

1 = 0.26, p = 0.61), or tone
predictability (𝜒2

1 = 0.001, p = 0.96) on P2 amplitude. There
was, however, a three-way interaction between half of learning,
age, and tone predictability (𝜒2

1 = 4.72, p = 0.03). There were
no other significant main effects (EEG data quality, 𝜒

2
1 = 1.09,

p = 0.30), or significant two-way interactions (tone predictability
× age, 𝜒

2
1 = 0.47, p = 0.49; age × half, 𝜒

2
1 = 2.14, p = 0.14;

tone predictability × half, 𝜒
2
1 = 0.36, p = 0.55). Follow-up linear

mixed effectsmodels comparing P2 amplitude as a function of age
and tone predictability in each half separately (with random-by
subject effects of tone predictability) confirmed that there were
no effects of age, predictability, or their interaction in the first
half (all 𝜒

2s 0.67 and p’s > 0.41), while there was a significant
interaction between age and tone predictability in the second
half (𝜒2

1 = 4.33, p = 0.04). In the second half alone, there were
still no significant main effects of tone predictability (𝜒2

1 = 0.49,
p = 0.48) or age (𝜒2

1 = 0.07, p = 0.80). Together, these results
suggest that for older infants, P2 amplitude differs as a function
of tone predictability after infants have had the opportunity to
learn from the statistics of the auditory information. In other
words, P2 amplitude shows evidence of learning-related change,
in a manner consistent with past research, for older infants
(Figure 4b).

3.3 EEG Index of Statistical Learning Relates to
Caregivers’ Entropy Following Vocalization

Finally, we were interested in understanding how early expe-
rience with predictable structure modulates infants’ statistical
learning later in life. As the P2 amplitude showed learning-related
change, we used this component to calculate our ‘EEG learning
score,’ by subtracting the P2 amplitude for unpredictable 1st
position tones from the average P2 Amplitude for predictable 2nd
and 3rd position tones. A positive value thus reflects learning by
indicating a greater P2 amplitude for predicted than unpredicted
tones, while a negative value reflects greater P2 amplitude
for unpredicted information. We investigated the longitudinal
relationship between this learning score and caregiver entropy.

We reasoned that the development of neural responses to auditory
structure might be most related to experience with predictabil-
ity following auditory input. As such, we first examined the
relationship between caregiver entropy following vocalizing and
EEG learning scores, and found that, indeed, caregiver entropy
following vocalizing significantly related to the EEG learning
score months later (main effect of caregiver entropy following
vocalizing, F(1,79) = 4.72, p = 0.03). Specifically, infants whose
primary caregivers displayed greater predictability (i.e., lower
entropy) following vocalizing showed a larger EEG learning score
(a larger difference in P2 Amplitude to predictable relative to
unpredictable tones, Figure 5a). There was also a main effect of
how much an infant looked at their caregiver (F(1,79) = 4.19, p =
0.04) suggesting, intuitively, that the amount an infant attends
to their caregiver also shapes their early learning. There was also
a marginal main effect of how frequently a caregiver vocalized
(F(1,79) = 4.07, p = 0.05), but no main effects of age at Visit
One (F(1,79)< 0.001, p = 0.99), age at Visit Two (F(1,79) = 0.14,
p = 0.71), or EEG data quality (F(1,79) = 0.34, p = 0.56). There
were also no two- or three-way interactions (all F’s < 3.56, all
p’s > 0.06). This pattern of results supports the hypothesis that
caregiver predictability following auditory cues is related to the
development of auditory statistical learning.

To test how specific to auditory input this effect was, we also
examined whether overall caregiver entropy affected infants’

9 of 15

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13570 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [19/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 4 ERP results during the statistical learning task. (a) N1 latency (y-axis, milliseconds) does not differ as a function of Tone Predictability
(x-axis), in either the first half (gray) or second half (yellow) of the statistical learning task. Inset depicts N1 latency in the context of an example ERP
response to remind readers what this metric reflects. (b) P2 amplitude (y-axis, microvolts) differs as a function of Tone Predictability (x-axis), in the
second half (pink) but not first half (gray) of the statistical learning task for older babies, but not in younger babies (vertical panels; note, age was
modeled continuously and the median-split into older and younger groups is for visualization purposes only). p value reflects significant three-way
interaction of half, age, and predictability from linear mixed effects model reported in the Results section. Inset depicts P2 Amplitude in the context of
an example ERP response to remind readers what this metric reflects. In both panels, dots represent group means for the plotted ERP response, shading
indicates 95% confidence intervals around the mean.

subsequent neural responses to structured auditory information.
Overall caregiver entropy scores were not significantly related to
the EEG learning scores (F(1,87) = 2.62, p = 0.11, Figure 5b). There
was a main effect of infant looking toward the caregiver (F(1,87) =
4.02, p = 0.05), but no other significant main effects (age at Visit
One, F(1,87) = 0.08, p= 0.78; age at Visit Two, F(1,87) = 0.59, p= 0.44;
EEG data quality, F(1,87) = 0.09, p = 0.77), nor two- or three-way
interactions (all F’s < 2.38, all p’s > 0.13). Along with exploratory
control analyses showing that caregiver entropy following non-
auditory behaviors also does not predict auditory statistical
learning (presented in the SupplementaryMaterial), these results
suggest that caregiver predictability within a particular sensory
domain is more relevant than general caregiver predictability in
shaping subsequent learning.

4 Discussion

We tested the hypothesis that differences in the predictability of
infants’ early experiences shape the neurodevelopment of core
learning and memory systems while they are highly malleable.
Specifically, we examined predictability during dyadic caregiver–
infant interactions and neural evidence of statistical learning
months later in an under-studied African context. We found
that the predictability of caregivers’ sensory behaviors (here,
following auditory signals) was associated with how infants’
brains responded to novel, predictable statistical information in
the auditory domain approximately five months later. The effect
of caregiver predictability on later learning was most relevant
in the matching sensory modality, providing support for the
hypothesis that developmental trajectories in statistical learning

are closely tied to relevant experience. We elaborate on each of
these findings below.

First, we replicated past results suggesting that caregivers show a
great deal of variability in how predictable they are (Aran et al.
2024; Davis et al. 2017, 2019; Davis and Glynn 2024; Demaestri
et al. 2022; Holmberg et al. 2022; Klein and Feldman 2007; Ugarte
and Hastings 2023; Vegetabile et al. 2019; Young, Frankenhuis,
and Ellis 2020), both overall and following particular behaviors
(here, vocalizing). Past work examining caregiver predictability
in our longitudinal sample has also reported correlations between
overall and behavior-specific entropy (Forest et al. 2024). Thus,
rather than providing highly predictable signals in some aspects
of behavior and highly unpredictable information in others,
caregivers are relatively consistent in how much structure they
provide their infant. We refer readers to Forest et al. (2024), for a
more comprehensive description of caregiver predictability across
cultural contexts in this African cohort, but note that for the
purposes of this paper there was sufficient divergence in these
metrics to examine the effect of each on later auditory statistical
learning.

As such, we tested whether infants showed neural evidence
of sensitivity to statistical structure by recording their EEG
responses to predictable and unpredictable information during
an auditory statistical learning task. Past research using the
paradigm employed here has shown that in North American 2-
year-olds, N1 latency and P2 amplitude are sensitive to whether a
sound is predictable (Pierce, Carmody Tague, and Nelson 2021).
In our data, N1 latency was not statistically related to tone
predictability. This may be because this metric, which has been
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FIGURE 5 (a) Entropy following vocalizing (x-axis; values aremean
centered) predicts EEG statistical learning scores (y-axis, the difference
between P2 amplitude to predictable—unpredictable tones in the second
half of learning). p value reflects the significant main effect of caregiver
entropy following vocalizing on EEG statistical learning score from linear
models reported in the Results section, simple Pearson’s correlation
between caregiver entropy following vocalizing and EEG statistical
learning score is also noted for convenience. (b) Overall entropy (x-axis;
values are mean centered) was not significantly related to EEG statistical
learning scores (y-axis). In both panels, dots represent individual care-
givers’ entropy. Lines represent linear model fit of entropy as a function
EEG learning score, shading indicates 95% confidence intervals around
the model fit.

interpreted to signify early discrimination of stimulus categories
or the processing of a stimulus’ sensory features (Coull 1998;
Heinks-Maldonado et al. 2005; Jeste et al. 2015; Soares et al. 2020),
does not emerge as relevant to statistical learning until after the
first postnatal year. This interpretation is consistent with work
showing that although this component emerges during statistical
learning in toddlers (Jeste et al. 2015; Pierce, Carmody Tague, and
Nelson 2021) and children (Jeste et al. 2015; Soares et al. 2022),
it changes more dramatically as a function of learning in adults
than children (Soares et al. 2022).

In contrast, the amplitude of the P2 did differ as a function
of the predictability of auditory information. Specifically, we
observed a three-way interaction between tone predictability,
half of the learning phase, and continuous age (in months),
such that in the second half of learning, P2 amplitude differed
by whether a tone was predictable in older infants. On the
surface, this result is similar to past research, which has shown
higher P2 amplitude to predictable versus unpredictable tones.
However, we did not expect to observe age differences in this
effect. Although this result may indicate that the younger infants
cannot learn the statistical structure in the stream of tones, this
seems unlikely given evidence that even neonates demonstrate
statistical learning (e.g., Fló et al. 2022; Kudo et al. 2011; Teinonen
et al. 2009). Alternatively, the learning rate of younger and

older infants may differ as others have suggested (e.g., Forest,
Schlichting, et al. 2023; Gomez 2016), such that younger infants
learn more slowly than older ones. That is, the younger infants
here may not have been provided with enough opportunity to
learn the structure, but could do so with a longer exposure.

Given the P2 amplitude showed the most evidence of learning-
related change in our sample, we used this metric to explore
our central question of whether caregiver predictability would
shape infants’ subsequent statistical learning. Specifically, our
“EEG statistical learning score” reflected infants’ P2 responses
to predictable versus unpredictable tones in the second half of
the learning task. Caregiver predictability following vocalizing
significantly predicted infant statistical learning in this auditory
paradigm. That is, infants who had more predictable caregivers
in the first few postnatal months showed more of a difference
in P2 amplitude for predictable relative to unpredictable tones
several months later. This finding is consistent with the idea that
infants who havemore predictable caregiver input have hadmore
practice learning fromhighly predictable statistics, and thus show
better learning during our task. These results thus provide one
culturally agnostic mechanism by which caregivers shape their
infant’s learning.

Interestingly, we found that caregiver predictability following
vocalizing predicted later statistical learning while overall care-
giver predictability did not, suggesting subtle differences in
how caregivers structure their behavior across sensory domains
matters for infants’ emerging learning abilities. This finding adds
to a body of research aimed at understanding how statistical
learning develops across modalities. In particular, while adult
statistical learning shows stability and consistency within one
sensory modality, performance is not correlated across modali-
ties (Siegelman and Frost 2015). This suggests relative domain
specificity (Siegelman et al. 2017), and hints that nuanced dif-
ferences in prior experience across domains might shape unique
learning trajectories. In that vein, some evidence suggests that
auditory, linguistic statistical learning develops earlier than visual
statistical learning, or nonlinguistic auditory statistical learning
(Raviv and Arnon 2018), potentially because children receive a
great deal of early, socially relevant (Ferguson and Lew-Williams
2016) experience with linguistic information. Our results are
consistent with this idea, as they suggest individual differences
in statistical learning are best predicted by experience following
sensory behaviors in the relevant domain.

Fundamentally, our results also link extensive literatures high-
lighting the importance of early caregiving for later develop-
mental outcomes with an emerging understanding of the exact
ways inwhich the structure of caregiver–child interactions shapes
learning. These relationships are crucial to understand, both for
their broad applicability and their mechanistic insight. In regard
to broad applicability, caregiver behavior is measurable across
species and thus these approaches allow for linking advances in
animal-models to human development (see Birnie and Baram
2022; Davis and Glynn 2024). As the behaviors coded to under-
stand caregiver predictability are purely sensory, this approach
also ensures the signal measured is culturally agnostic, and
implies caregiver predictability is key to understanding how early
experiences shape ongoing development across cultural contexts.
While local variation in sensory signals, like the particular
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language spoken, may shape the exact dynamics of such learning
there is no reason to suspect the African data presented here
should be treated any differently than data collected in a Western
context. This approach (and our sample) thus help to answer
calls to broaden the scope of scientific research and theorizing
beyond communities in the global North (Nketia, Amso, and
Brito 2021).

On the mechanistic side, it has long been understood that
children’s learning is improved via scaffolding (Vygotsky 1978),
but increasing evidence shows that caregivers and children work
together to structure naturalistic, dyadic interactions in ways that
are most useful for the child’s learning (Franchak, Kretch, and
Adolph 2018; Karmazyn-Raz and Smith 2023; Sameroff 2009).
Most likely, rather than simply expose infants to predictable
information, caregivers provide socially reinforced (Tummelt-
shammer, Feldman, and Amso 2019; Werchan and Amso 2021)
opportunities to learn about environmental statistics, and pro-
mote attention on the part of their infants in rich, multimodal
learning contexts (Lee and Lew-Williams 2023; Schroer and Yu
2022, 2023; Suarez-Rivera, Smith, and Yu 2019), thereby moti-
vating the development of more specific learning mechanisms.
This framework also suggests an alternative explanation of our
results—given that our metric of caregiver predictability indexes
how predictable caregivers are following vocalizing, rather than
the predictability within the vocal signal itself as is more typical
in statistical learning studies, one possibility is that caregiver
vocalizing serves to capture infant attention and promote learn-
ing of what follows reliably, potentially by facilitating infants’
active engagement. As other caregiver behaviors which might
similarly capture attention, like touching the infant, did not
predict later learning (see Supplementary Material) this seems
to be most specific to vocalizing, or potentially multimodal
combinations of parental behaviors which have been highlighted
as key for early learning in other work (e.g., Schroer and Yu
2022, among others). Our results thus add to these converging
lines of researchwhich all emphasize just how fundamental early
interactions with a caregiver are for setting-up long-term learning
outcomes.

This study has a few limitations. First, we were focused on under-
standing how the brain responded to predictable information
during a window of elevated plasticity for learning, rather than
behavioral correlates of this process (Gee and Cohodes 2021;
McLaughlin and Gabard-Durnam 2022; Ugarte and Hastings
2023). While we measured infants’ interactions with a primary
caregiver, infants who grow up in homes with shared caregiving
responsibilities may spend less time with any particular caregiver
than those who are cared for primarily by one person. It is also
possible that within one caregiver–infant dyad, the predictability
of caregiver behavior changes with the time of day, number of
children present, or infant’s age. Thus, future work will need
to explore the stability of these differences in early experience,
and their consequences for behavioral measures of statistical
learning. And, given that we measured predictability following
certain caregiver behaviors rather than the predictability within
one sensory domain, future work might aim to understand how
differences in the predictability and frequency of the auditory
input itself work together to optimally shape later learning.
Further research is also required to determine whether these
effects persist beyond infancy as long-term individual differences,

or whether caregiver predictability later in life, when learning
and memory systems are less malleable demonstrates the same
effects. Despite these limitations, our study provides mechanistic
insights into how early experiences shape cognitive development
around the world, by demonstrating that the ongoing develop-
ment of neural processes which are crucial for learning in infancy
and beyond are shaped in nuanced ways by infants’ everyday
caregiving experiences.
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