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Top-down knowledge rapidly acquired through abstract rule learning 
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A B S T R A C T   

Visual attention is an information-gathering mechanism that supports the emergence of complex perceptual and 
cognitive capacities. Yet, little is known about how the infant brain learns to direct attention to information that 
is most relevant for learning and behavior. Here we address this gap by examining whether learning a hierar-
chical rule structure, where there is a higher-order feature that organizes visual inputs into predictable se-
quences, subsequently biases 9-month-old infants’ visual attention to the higher-order visual feature. In 
Experiment 1, we found that individual differences in infants’ ability to structure simple visual inputs into 
generalizable rules was related to the change in infants’ attention biases towards higher-order features. In 
Experiment 2, we found that increased functional connectivity between the PFC and visual cortex was related to 
the efficacy of rule learning. Moreover, Granger causality analyses provided exploratory evidence that increased 
functional connectivity reflected PFC influence over visual cortex. These findings provide new insights into how 
the infant brain learns to flexibly select features from the cluttered visual world that were previously relevant for 
learning and behavior.   

Visual attention is a fundamental capacity that enables infants to 
gather information and interact with their environment. Many prior 
studies have examined how visual attention influences learning and the 
emergence of more complex perceptual and cognitive capacities across 
infancy and childhood (Amso and Johnson, 2006; Cheng et al., 2019; 
Johnson et al., 2003; Markant and Amso, 2013b, 2016; Markant et al., 
2015; Ross-Sheehy et al., 2011; Wu and Kirkham, 2010). Yet, less is 
known about how rapidly acquired information subsequently biases 
attentional selection in infancy. Prior work has shown that infants are 
capable of learning hierarchical rule structures, which involve a 
higher-order context governing stimulus-response associations. The 
term “higher-order context” is drawn from the hierarchical reinforce-
ment learning literature (Collins et al., 2014; Collins and Frank, 2013; 
Donoso et al., 2014; Frank and Badre, 2012), and can be a stimulus, 
space, object, or person that organizes inputs into abstract rule struc-
tures. Here we asked whether abstract rule learning is a mechanism by 
which the infant brain learns which competing features of a cluttered 
visual environment are informative for subsequent attentional selection 
in a novel environment. 

Visual attention shows rapid developmental changes over the first 
year of postnatal life (Amso and Scerif, 2015; Oakes and Amso, 2018). 

Visual attention can either be bottom-up driven, based on saliency maps 
of the visual-spatial environment (e.g., Althaus and Mareschal, 2012; 
Amso et al., 2014; Frank et al., 2009a), or top-down driven. Top-down 
visual attention, which is guided based on prior experience or current 
behavioral goals, has been demonstrated by 4 months of age (Johnson 
and Vecera, 1996; Tummeltshammer and Amso, 2018; Tummelts-
hammer et al., 2014; Werchan et al., 2015). Attention is often thought of 
in terms of a “spotlight” that enhances processing of relevant informa-
tion by biasing attention towards some stimuli over others that are 
simultaneously competing for attentional resources (Carrasco, 2011). 
This biasing occurs through two mechanisms: bottom-up sources that 
transmit sensory information from lower-order to higher-order cortical 
areas via feedforward cortical pathways, and top-down sources that 
carry information regarding current behavioral goals from higher-order 
to lower-order cortical areas via feedback cortical pathways (Amso and 
Scerif, 2015; Carrasco, 2011; Desimone and Duncan, 1995; Gilbert and 
Li, 2013). Thus, these bottom-up and top-down mechanisms can shift 
the attentional spotlight as a function of both low-level stimuli charac-
teristics and internal behavioral goals. 

Previous work has established relationships between attention and 
learning in infancy. For example, Markant, et al. (2016) used a spatial 

* Corresponding Author at: Postal Address: 190 Thayer St. Providence, RI, 02912 United States. 
E-mail address: Denise_Werchan@Brown.edu (D.M. Werchan).  

Contents lists available at ScienceDirect 

Developmental Cognitive Neuroscience 

journal homepage: www.elsevier.com/locate/dcn 

https://doi.org/10.1016/j.dcn.2020.100761 
Received 16 May 2019; Received in revised form 11 January 2020; Accepted 18 January 2020   

mailto:Denise_Werchan@Brown.edu
www.sciencedirect.com/science/journal/18789293
https://www.elsevier.com/locate/dcn
https://doi.org/10.1016/j.dcn.2020.100761
https://doi.org/10.1016/j.dcn.2020.100761
https://doi.org/10.1016/j.dcn.2020.100761
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcn.2020.100761&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Developmental Cognitive Neuroscience 42 (2020) 100761

2

cueing task to bias 9-month-old infants’ attention to either own- or 
other-race faces. The authors found that infants discriminated faces in 
the focus of the attention bias, regardless of race, indicating that 
attention engagement influenced the efficacy of face discrimination. 
Other work has found that 6-month-old infants can rapidly extract 
top-down knowledge about spatial covariations from simple arrays, and 
then use this contextual knowledge to guide visual search (Tummelts-
hammer and Amso, 2018). 

Prior work has also shown that infants as young as 8-months of age 
recruit the PFC to organize visual inputs into abstract rules that support 
flexible learning in novel contexts (Werchan et al., 2015, 2016). These 
studies found that 8-month-old infants can use simple visual features, 
such as the shape of an object, as higher-order contexts to structure 
inputs into stimulus-response rules. Importantly, infants were able to 
generalize these rules to support flexible learning in new contexts (e.g., 
to new shapes). These data indicate that PFC is online and acting as an 
important information gathering mechanism in infancy. As in any 
developing system, the data also showed that there is substantial indi-
vidual variability in infants’ learning and generalization of abstract rules 
(Werchan et al., 2015, 2016), which was also associated with individual 
differences in PFC activation during learning (Werchan et al., 2016). The 
present work was designed to explore the value of this mechanism to 
infant learners. We reasoned that structuring visual inputs into abstract 
rules may assign attentional priority to the higher-order features that 
cue these rule structures. The prediction would be that infants who learn 
that a higher-order feature is relevant for organizing stimulus-response 
associations into abstract rules should be biased to subsequently select 
that visual feature for processing in novel situations. 

In adults, converging evidence from neuroimaging and anatomical 
studies has established the PFC as a source of top-down attention signals 
that modulate processing in early visual areas (Desimone and Duncan, 
1995; Gilbert and Li, 2013; Noudoost et al., 2010; Shomstein and Got-
tlieb, 2016). The PFC is a higher-order area that is involved in encoding 
top-down knowledge about task-relevant goals and abstract rules that 
support flexible and goal-directed control of behavior (Badre, 2008; 
Cohen et al., 2002; Kolb et al., 2012; Miller and Cohen, 2001; O’Reilly, 
2006; Rougier et al., 2005). This region is also highly interconnected, 
sending and receiving long-range projections from nearly all sensory 
and motor systems, making it well-suited to modulate processing in 
posterior neural regions (Gilbert and Li, 2013; Miller and Cohen, 2001). 

Evidence from axonal tract-tracing studies in monkeys reveal an 
intricate anatomical network of reciprocal corticocortical connections 
between areas of the PFC and extrastriate visual cortex (Barbas, 2000; 
Petrides and Pandya, 2001; Ungerleider et al., 1989; Webster et al., 
1994). Functional interactions within these corticocortical connections 
are thought to be the basis for PFC modulation of neuronal activity in 
early visual areas (Baluch and Itti, 2011; Paneri and Gregoriou, 2017). In 
support of this hypothesis, functional neuroimaging studies in adult 
humans have shown that activity in PFC areas is correlated in a task 
specific manner with activity in posterior visual regions (Corbetta and 
Shulman, 2002; Gazzaley et al., 2007; Kastner and Ungerleider, 2000; 
Morishima et al., 2009; Rossi et al., 2009; Taylor et al., 2007). Addi-
tionally, studies of patients with PFC lesions and studies using trans-
cranial magnetic stimulation (TMS) to perturb PFC function provide 
direct causal evidence that the PFC exerts top-down modulatory control 
over processing in visual cortex in adults (Barcel�o et al., 2000; Capotosto 
et al., 2009; Ruff et al., 2008; Taylor et al., 2007; Zanto et al., 2011). Yet, 
it is unclear whether similar mechanisms operate in young infants. 

As such, the current study examines whether top-down knowledge 
rapidly acquired through abstract rule learning influences subsequent 
downstream visual attention in 9-month-old infants. We tested 9-month- 
olds, given that infants of this age are capable of both engaging in ab-
stract rule learning mechanisms that involve the PFC (Werchan et al., 
2015, 2016) and engaging in top-down guidance of spatial attention 
(Amso and Johnson, 2006, 2008; Tummeltshammer and Amso, 2018). 
In a first experiment, we used a behavioral paradigm to test whether 

abstract rule learning subsequently biases infants’ attention to 
task-relevant visual information. To examine this question, we first 
measured infants’ baseline visual attention biases to color and shape 
information using an attention bias priming task (adapted from Werchan 
et al., 2019). During this task, infants were primed with an object image, 
after which they immediately saw two test items presented side-by-side 
(Fig. 1). One test item matched the prime in color but differed in shape 
(color-match item) and the other test item matched the prime in shape 
but differed in color (shape-match item). We measured the distribution 
of infants’ looking to the color-match and shape-match items as an index 
of their attention biases. Importantly, the timing parameters of this task 
were based on similar tasks in the infant visual attention literature (see 
Werchan et al., 2019). For instance, spatial cueing paradigms, where a 
brief cue elicits an excitation toward a stimulus with short delays, would 
suggest that a cue followed immediately by a probe stimulus should 
benefit or facilitate the visual feature that is currently excited over the 
short cue-target duration (Markant and Amso, 2013a; Posner, 1980; 
Richards, 2000). The same timing parameters have been used in infant 
negative priming studies, where attended featural information is 
enhanced with short delays between prime and probe target displays 
(Amso and Johnson, 2005, 2008; Tipper, 1985). Based on this literature, 
we interpret greater looking as evidence that that feature had been 
selected for attentional priority. 

After the attention bias priming task, we then presented infants with 
several visual stimulus-response pairings during an abstract rule 
learning task, where infants could use visual feature of color or shape as 
a higher-order context to organize stimulus-response inputs into abstract 
rules for action. In a Shape Contexts condition of the abstract rule 
learning task, infants could use shape as a higher-order context to 
organize visual inputs into simpler color-response rules (Fig. 2A). In a 
Color Contexts condition, infants could use color as a higher-order 
context to organize visual inputs into simpler shape-response rules 
(Fig. 2B). Importantly, we measured the efficacy of infants’ abstract rule 
learning by assessing their ability to generalize these rules to novel 
shapes or colors after initial learning. Finally, after the rule learning task 
we then re-measured infants’ attention biases to both color and shape to 
examine whether abstract rule learning influenced infants’ attention 
biases. We predicted that individual differences in the efficacy of in-
fants’ generalization of abstract rules would relate to the degree of 
change in infants’ attention biases to the visual features used as higher- 
order contexts (color or shape). 

In a second experiment, we attempted to replicate and extend the 
behavioral results of Experiment 1, and also incorporated functional 
near-infrared spectroscopy (fNIRS) to explore the role of the PFC and 
visual cortex in our tasks. Recall that neuroimaging and anatomical 
studies establish the PFC as a source of top-down modulatory control 
over processing in early visual areas (e.g., Barcel�o et al., 2000; Capotosto 
et al., 2009; Ruff et al., 2008; Taylor et al., 2007; Zanto et al., 2011). 
Thus, we examined directed functional connectivity between the PFC 
and visual cortex during rule learning as a correlational measure of PFC 
modulation of visual attention. We predicted that individual differences 
in functional connectivity would relate to the efficacy of abstract rule 
learning, as well as the subsequent change in infants’ attention biases to 
task-relevant visual features. Examining the impact of abstract rule 
learning on shaping visual selection may provide mechanistic insights 
into how the infant brain learns to efficiently direct attention to previ-
ously relevant visual information in a cluttered environment with many 
competing options. 

1. Experiment 1 

In our first experiment, we used a behavioral paradigm to examine 
whether top-down knowledge acquired through abstract rule learning 
influences downstream visual attention in 9-month-old infants. We first 
measured infants’ baseline attention biases to both color and shape 
using an attention bias priming task (Werchan et al., 2019). Infants were 
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then randomly assigned to a Shape Contexts or a Color Contexts con-
dition during a rule learning and generalization task. During this task, 
we presented infants with visual stimulus-response pairs, where simple 
visual features (color or shape) can act as higher-order contexts that 
organize visual inputs for learning. Specifically, infants could use the 
visual feature of shape as a higher-order context to organize inputs into 
simpler color-response rules in a Shape Contexts condition (Fig. 2A). In 
an analogous Color Contexts condition, infants could use the visual 
feature of color as a higher-order context to organize visual inputs into 
shape-response rules (Fig. 2B). Finally, we re-measured infants’ atten-
tion biases to both color and shape. We predicted that individual dif-
ferences in the efficacy of rule learning would correlate with changes in 
infants’ attention biases to visual features that act as higher-order con-
texts to organize inputs for learning. 

2. Experiment 1 method 

2.1. Participants 

The final sample consisted of 40 nine-month-old infants (M ¼ 9.45 
months, SD ¼ 0.67 months, 20 females, 20 males, 29 white non- 
Hispanic, 3 black, 5 Hispanic, 2 Asian, and 1 Mixed Race/Other). In-
fants were randomly assigned to a Shape Contexts condition (N ¼ 20, M 
¼ 9.59 months, SD ¼ 0.84 months) or a Color Contexts condition (N ¼
20, M ¼ 9.45 months, SD ¼ 0.43 months). Sample size was determined 
based on an a priori power analysis with a large effect size (d ¼ 0.4) 
estimated from prior work (Werchan et al., 2015) at 90 % power, which 
indicated that approximately 20 infants per condition would provide 
sufficient statistical power. An additional 3 infants were tested but 

excluded from the final sample for failing to complete the experiment 
due to fussiness or crying. Infants were recruited through community 
advertisements and through birth records from the state department of 
health. Infants were prescreened for premature birth (< 36 weeks), low 
birth weight (< 5 lb), or a history of serious health problems. The Brown 
University Institutional Review Board approved the study, and parental 
consent was obtained prior to testing. Families were compensated for 
time and travel to our laboratory. 

2.2. Eye tracking apparatus 

Stimuli were presented via SMI Experiment Center software on a 2400

monitor. Eye tracking was collected using an SMI REDn-Scientific 
apparatus (Teltow, Germany). Infants were seated on their parents’ 
lap approximately 60 cm from the monitor. Before the study began, 
infants’ point of gaze was calibrated by presenting five target stimuli, 
one in the middle of the monitor and one in each of the four corners of 
the monitor. The point of gaze was validated by presenting one stimulus 
in each of the four corners of the monitor. Calibration was repeated if 
deviations were greater than 2�. Areas of interest (AOIs) were defined in 
the native SMI software-analysis package BeGaze. 

2.3. Procedure 

The study consisted of (1) a baseline attention bias priming task, (2) a 
rule learning task, (3) a post-learning attention bias priming task. All 
infants received the same attention bias priming task at baseline and 
after learning. This task measured infants’ attention biases to both color 
and shape. Infants were randomly assigned to either a Shape Contexts 

Fig. 1. Schematic of all trials used in the baseline and post-learning attention bias priming task, which was used to measure infants’ attention biases to color 
and shape. 

Fig. 2. Example of the hierarchical structure used during the abstract rule learning task for the Shape Contexts condition (A) and the Color Contexts condition (B). 
Each trial consisted of the central stimulus, followed by a cartoon reward presented on the right or left of the screen (C). 
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condition or a Color contexts condition for the abstract rule learning 
task. Different colors and shapes were used in the attention bias priming 
task than the lower-order colors and shapes used in the rule learning and 
generalization tasks (see Fig. 1 for all stimuli used in the attention bias 
priming task, and Fig. 2 for all stimuli used in the rule learning and 
generalization task). 

2.3.1. Attention bias priming task 
Infants received four trials during the attention bias priming task, 

which was used to measure infants’ attention biases to the visual fea-
tures of color and shape at baseline and after the rule learning task 
(Fig. 1. During each trial, an attention-getting stimulus was first pre-
sented in the middle of the screen to center infants’ point-of-gaze. The 
trial was initiated once the experimenter judged that the infant was 
looking at the attention-getter. The prime stimulus was presented in the 
center of the screen for 1,000-ms. The prime stimulus then disappeared 
and the test stimuli appeared simultaneously on the left and right sides 
of the screen for 2000-ms. On each trial, one test stimulus matched the 
prime stimulus in shape but differed in color (shape-match item), and 
the other test stimulus matched the prime stimulus in color but differed 
in shape (color-match item). The right/left locations of the color-match 
and shape-match items were counterbalanced across trials, and the 
order of trials was randomized for each infant. Different sets of stimuli 
were used for the baseline and post-learning attention bias priming task, 
which was counterbalanced across infants. 

2.3.2. Rule learning task 
The rule learning task consisted of a learning phase followed by a 

generalization phase. During the learning phase, infants were presented 
with several visual stimulus-response pairs in a Shape Contexts condi-
tion (Fig. 2A) or a Color Contexts condition (Fig. 2B), where the 
centrally-presented stimulus would predict a cartoon reward that sub-
sequently appeared on the right or left of the screen. In the Shape 
Contexts condition, the central stimuli varied by the visual feature of 
shape, which infants could use as a higher-order context to organize 
inputs into a set of simpler color-response rules (e.g., red-colored stimuli 
predict a cartoon reward appearing on the left of the screen, blue- 
colored stimuli predict a cartoon reward appearing on the right of the 
screen). In the analogous Color Contexts condition, the central stimuli 
varied by color, which infants could use to organize inputs into a set of 
simpler shape-response rules (e.g., flower-shaped stimuli predict a 
cartoon reward appearing on the left of the screen, cupcake-shaped 
stimuli predict a cartoon reward appearing on the right of the screen). 

At the start of each trial during the learning and generalization 
phase, infants’ point of gaze was centered by presenting an attention- 
getting stimulus in the middle of the screen. Once the experimenter 
judged that the infant was looking at the central attention-getter, the 
trial was initiated. During each trial, the central stimulus was first dis-
played in the center of the screen for 1,500-ms. The stimulus then dis-
appeared, and after a 1,000-ms delay a cartoon reward appeared on the 
left or right of the screen for 1,500-ms (Fig. 2C). Infants were presented 
with two blocks of eight 4,000-ms stimulus-response trials, for a total of 
16 trials (~1-min), during the learning phase. The number of trials was 
determined by prior studies using similar spatiotemporal learning par-
adigms in infants (e.g., Johnson et al., 1991, 1994; Tummeltshammer 
and Amso, 2018; Werchan et al., 2015). The presentation order of the 
trials was randomized in each of the two blocks of the learning phase. 

After the learning phase, infants were then presented with two novel 
stimulus-response pairings during a generalization phase to assess 
whether infants learned and generalized an abstract rule (i.e., one that is 
not tied the specific context in which it was learned in; Fig. 2). In the 
Shape Contexts condition, infants were presented with a novel shape 
that had the same color-response rules as in the previous learning phase. 
In the Color Contexts condition, infants were presented with a novel 
color that had the same shape-response rules as in the previous learning 
phase. Infants were presented with a total of 8 trials in a randomized 

order. The same trial timing parameters were used during the general-
ization phase as in the learning phase. 

3. Data processing 

3.1. Attention bias priming task 

We examined infants’ attention biases by measuring the distribution 
of infants’ looking to the color-match and the shape-match test items. 
SMI BeGaze software was used to calculate the duration of looking to 
each test item by summing across all observed samples in which an in-
fant’s point of gaze fell within that item’s AOI. The first 150-ms period 
was excluded from the analysis for each test trial to account for the time 
required for infants to make a saccade away from the prime stimulus 
toward either the left or right-test item after the appearance of the test 
display. 

Our measure of interest was the change in infants’ attention biases 
after the abstract rule learning, task relative to each infant’s own 
baseline bias. We operationalized infants’ attention biases as the dif-
ference in total duration of looking (out of 2,000-ms) at the shape-match 
relative to the color-match items a t-test (see also Werchan et al., 2019). 
Thus, we calculated infants’ shape bias by subtracting the duration of 
time spent looking at the color-match item from the duration of time 
spent looking at the shape-match item. Infants’ color bias was the in-
verse of their shape bias. We then calculated the change in infants’ 
attention biases by subtracting infants’ baseline attention bias scores 
from the post-learning attention bias scores. Thus, positive difference 
scores for color biases indicate a greater attention bias to color after 
learning relative to baseline, and positive difference scores for shape 
biases indicate a greater attention bias to shape after learning relative to 
baseline. Difference scores near zero indicate no change in infants’ 
attention biases after learning relative to baseline. We verified that in-
fants’ attention bias scores at baseline and post-learning were normally 
distributed through visual inspection and statistically using the 
Kolmogorov-Smirnov test for normality, all ps > 0.127. 

3.2. Abstract rule learning task 

We examined rule learning and generalization performance by 
measuring infants’ eye movement reaction times from trial onset (i.e., 
when the central stimulus first appeared on the screen) to the time it 
took to arrive at the correct left/right reward location using SMI BeGaze 
software. We calculated eye movement reactions times using methods 
from prior similar studies that interpret decreases in eye movement re-
action times as evidence of learning in infants under 12 months of age 
(Amso and Johnson, 2006; Frank et al., 2009b; Kirkham et al., 2007; 
Marcus et al., 2007, 1999; Markant and Amso, 2013a; Tummeltshammer 
and Amso, 2018; Tummeltshammer and Kirkham, 2013; Werchan et al., 
2015). Trials with eye movement reaction times slower than two stan-
dard deviations from the median for each infant were excluded from 
analysis, which resulted in removal of 16 trials (1.67 %). Additionally, 
our paradigm was not gaze-contingent and infants were allowed to 
explore the screen freely throughout the trial. Thus, we did not remove 
trials if infants looked first to the incorrect side before looking to the 
correct side, but we only recorded reaction times for entry to the correct 
location for analysis. In this way, relatively slower reaction times indi-
cate that infants are making exploratory eye movements before the 
target appears and had not yet learned the rule. 

Our measures of interest were (1) learning of the stimulus-response 
associations during the initial learning phase of the task, and (2) 
generalization of learning to novel higher-order contexts during the 
generalization phase of the task. Learning of the stimulus-response as-
sociations was operationalized as a decrease in infants’ eye movement 
reaction times with trial exposure (Amso and Johnson, 2006; Frank 
et al., 2009a; Kirkham et al., 2007; Marcus et al., 2007, 1999; Markant 
and Amso, 2013a; Tummeltshammer and Amso, 2018; 
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Tummeltshammer and Kirkham, 2013; Werchan et al., 2015). We 
calculated changes in infants’ reaction times by binning every four 
consecutive trials in the learning phase to create four learning trial bins. 
Generalization was operationalized as faster reaction times during the 
generalization phase relative to the learning phase within each infant. 
This strategy corrects for speed of processing differences across indi-
vidual infants that may otherwise shape the data. We calculated infants’ 
generalization scores by subtracting the average reaction times during 
the generalization phase from the average reaction times during the 
learning phase of the abstract rule learning task. Thus, positive values 
indicate better generalization of abstract rules, and values near or less 
than zero indicate no generalization. We verified that these measures 
were normally distributed through visual inspection and statistically 
using the Kolmogorov-Smirnov test for normality, all ps > 0.092. 

4. Experiment 1 results 

4.1. Baseline attention biases and rule learning and generalization 
performance 

We first examined infants’ baseline biases to color/shape, measured 
during the attention bias priming task, as well as infants’ initial learning 
of the stimulus-response associations during the learning phase of the 
rule learning task. At baseline, we found that all infants had a signifi-
cantly greater attention bias to color over shape (calculated as a dif-
ference score of looking to color-match relative to shape-match items), t 
(39) ¼ 3.416, p ¼ 0.001, and that there were no significant differences in 
this bias between infants in the Color Contexts condition (M ¼ 108.35- 
ms, SD ¼ 277.42-ms) and the Shape Contexts condition (M ¼ 179.83-ms, 
SD ¼ 257.83-ms), t(38) ¼ 0.844, p ¼ 0.404. 

We then examined infants’ eye movement reaction times during the 
learning phase to test whether infants were learning the initial stimulus- 
response associations with trial exposure. We conducted a repeated- 
measures ANOVA with Learning Trial Bin (1, 2, 3, 4) as a within- 
subjects variable, Condition (Shape Contexts, Color Contexts) as a 
between-subjects variable, and infants’ averaged eye movement reac-
tion times as the dependent variable. This analysis revealed a main effect 
of Learning Trial Bin, F(3,114) ¼ 8.453, p < .001, and a main effect of 
Condition, F(1,38) ¼ 12.849, p ¼ .001. These findings indicate that in-
fants learned the stimulus-response associations with trial exposure. 
They also show that infants’ who were assigned to the Color Contexts 
condition had overall faster reaction times (M ¼ 2508.54-ms, SD ¼
44.87-ms) than those assigned to the Shape Contexts condition (M ¼
2753.64-ms, SD ¼ 42.23-ms). This main effect of Condition did not 
interact further with Learning Trial Bin, F(3,114) ¼ 0.968, p ¼ .411, 
indicating that the rate of learning was equivalent between the two 
conditions. 

We next examined whether infant learning (change in reaction time 
with trial exposure) reflects low-level stimulus-response associative 
learning, or whether infants formed abstract rules based on shape/color 
higher-order contexts. Infants were presented with a generalization task 
where novel contexts governed previously learned stimulus-response 
associations (Fig. 2). We conducted an ANOVA with Condition (Shape 
Contexts, Color Contexts) as a between-subjects variable and infants’ 
generalization scores (calculated as a difference score of average reac-
tion times during Learning – Generalization) as the dependent variable. 
Results indicated that all infants, as a group, had faster reaction times in 
generalization relative to learning, as evidenced by generalization scores 
significantly greater than zero, F(1,38) ¼ 15.599, p < .001. We also 
found a main effect of Condition, F(1,38) ¼ 4.394, p ¼ .043, indicating 
that generalization performance was better in the Color Contexts con-
dition (M ¼ 245.85-ms, SD ¼ 44.06-ms) than in the Shape Contexts 
condition (M ¼ 75.21-ms, SD ¼ 68.44-ms). We then conducted two one- 
sample t tests comparing generalization scores to chance (0) separately 
for each condition. These analyses revealed that generalization scores 
were significantly greater than chance in the Color Contexts condition, t 

(19) ¼ 5.579, p < 0.001, but performance was overall more variable in 
the Shape Contexts condition, t(19) ¼ 1.099, p ¼ 0.285 (Fig. 3). 

To further ensure that generalization was specific to the higher-order 
shape or color context, we verified that reaction times during the fourth 
bin of the shape-contexts learning task were not correlated with reaction 
times during the first bin of the color-contexts generalization task, r(20) 
¼ -0.197, p ¼ .433. Reaction times during the fourth bin of the color- 
contexts learning task were also not correlated with reaction times 
during the first bin of the shape-contexts generalization task, r(20) ¼
-0.203, p ¼ .391. 

4.2. Influence of abstract rule learning on change in attention biases to 
color/shape from baseline 

We next examined the critical prediction of this work: whether the 
efficacy of learning abstract rules cued by color or shape influenced 
what visual features infants subsequently attended to after the rule 
learning task, relative to baseline. We conducted correlational analyses 
to test whether the efficacy of infants’ generalization, here the only 
measure of abstract rule learning, related to the degree of change in 
infants’ attention biases from baseline to post-learning. Our results 
revealed that infants’ generalization scores were correlated with the 
change in infants’ attention bias to shape (calculated as a difference 
score of infants’ shape biases after learning relative to baseline) in the 
Shape Contexts condition, r(20) ¼ 0.535, p ¼ .015 (Fig. 4A), such that 
better generalization of abstract rules cued by shape was associated with 
a greater change in infants’ attention biases to shape. These data indi-
cate that there was some degree of abstract rule learning for infants 
assigned to the Shape Contexts condition, despite the observed vari-
ability in infants’ generalization scores. Mirroring these findings, in-
fants’ generalization scores in the Color Contexts condition was also 
correlated with a greater change in infants’ attention biases to color 
(calculated as a difference score of infants’ color biases after learning 
relative to baseline), r(20) ¼ 0.730, p < .001 (Fig. 4B). Taken together, 
these results provide behavioral evidence that individual differences in 
the efficacy of abstract rule learning influences infants’ attention to the 
visual features that organize inputs into rules for learning. 

5. Experiment 2 

In Experiment 1, we found that individual differences in abstract rule 
learning were related to the change in infants’ attention biases to higher- 
order features, providing evidence that rapidly acquired top-down 
knowledge can influence subsequent downstream visual selection in 
infancy. We also found that infants assigned to the Color Contexts 
condition garnered more robust generalization results than infants 
assigned to the Shape Contexts condition. Nonetheless, infants in both 
conditions showed similar learning rates, as well as changes in their 
attention bias to color or shape, respectively. This suggests that the 
increased variability in the generalization data observed in the Shape 
Contexts condition may have been influenced by external factors or 
characteristics of the sample. As such, we repeated the Shape Contexts 
condition in Experiment 2 to attempt to replicate and extend our find-
ings. This was the first goal of Experiment 2. 

A second goal was to examine whether functional connectivity be-
tween the PFC, which we have shown to be involved in hierarchical rule 
learning in infancy (Werchan et al., 2016), and visual cortex is associ-
ated with task performance. In adults, top-down visual attention is 
thought to be mediated by functional interactions between the PFC and 
visual cortex (Gilbert and Li, 2013; Baluch and Itti, 2011; Paneri and 
Gregoriou, 2017). Prior studies also indicate that individual differences 
in PFC activation during rule learning is related to the efficacy of 
learning and generalization of hierarchical rules in infants (Werchan 
et al., 2016). Therefore, we measured whether infants’ cortical activity 
when learning an abstract rule relates to the efficacy of generalization as 
well as the subsequent change in infants’ attention biases. We tested a 
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sample of infants using the same experimental paradigm as in Experi-
ment 1, and we used functional near-infrared spectroscopy (fNIRS) to 
measure cortical activity and connectivity between infants’ PFC and 
visual cortex during learning. We predicted that increased PFC/visual 
cortex connectivity during learning would relate to both the efficacy of 
infants’ rule learning and generalization, as well as changes in infants’ 
attention biases to the relevant higher-order context. Examining indi-
vidual differences in cortical activation and connectivity, and the rela-
tion to behavioral performance, provides an opportunity to glean insight 
into the mechanisms of developmental change in these emergent systems. 

6. Experiment 2 method 

6.1. Participants 

The final sample consisted of 30 nine-month-old infants (M ¼ 9.5 
months, SD ¼ 0.48 months, 16 females, 12 males, 23 white non- 
Hispanic, 4 Hispanic, 1 Asian, 1 black, and 1 other). An additional 6 
infants were tested, but their data were discarded due to equipment 
malfunction (n ¼ 2) and fussiness or crying resulting in failure to com-
plete the experiment (n ¼ 4). 

6.2. Eye tracking apparatus 

Stimuli were presented via SMI Experiment Center software on a 2400

monitor. All eye tracking procedures were identical to those described in 
the Method section of Experiment 1. 

6.3. Procedure 

The exact same experimental methods described in Experiment 1for 
the Shape Contexts condition were used in Experiment 2, with the 
following exceptions: each of the two 32-s blocks of the rule learning 
task and the generalization task block were preceded by a 10-s white 

fixation cross on a black background to allow the hemodynamic 
response to return to baseline prior to the start of each block. We verified 
that infants’ attention bias scores and average reaction times during the 
learning and generalization phase of the rule learning task were nor-
mally distributed through visual inspection and statistically using the 
Kolmogorov-Smirnov test for normality, all ps > 0.090. 

6.4. fNIRS recording 

Infants’ frontal and visual cortical activity was recorded during the 
learning phase of the abstract rule learning task using a TechEn CW6 
NIRS system with wavelengths set at 695 and 830 nm. Raw signals were 
continuously sampled at 50 Hz. An array consisting of 9 optodes (3 
sources and 6 detectors, resulting in 6 source-detector channels) with an 
interoptode separation of 3 cm was placed over infants’ visual associa-
tion cortex and right/left frontal brain regions. The array was fixed on 
sturdy, flexible plastic to ensure that the distance between the sources 
and detectors remained constant at 3 cm. The optode array was attached 
inside of an adjustable neoprene headband to secure the optodes to the 
scalp. The array was placed over infants’ scalps using standardized co-
ordinates corresponding to the right and left lateral PFC (F3/F4 in the 
10–20 international EEG system) and visual association cortex (O2 in 
the 10–20 international EEG system). This positioning aligns with the 
10–20 coordinates used for localizing frontal and visual cortex activa-
tion in prior fNIRS work with infants (Bortfeld et al., 2007; Emberson 
et al., 2015; Werchan et al., 2018, 2016). 

6.5. fNIRS data preprocessing 

After recording, the fNIRS data were preprocessed prior to analyses 
using HomER 2.0 software (Huppert et al., 2009). We first digitally 
band-pass filtered the raw signals at 0.01– 0.1 Hz to remove systematic 
physiological and motion artifacts (Homae et al., 2010; White et al., 
2009). We then calculated the change in optical density for each 

Fig. 3. (A) Infants’ averaged eye movement 
reaction times to the cartoon reward during the 
learning and generalization phases of the ab-
stract rule learning task in the Shape Contexts 
and Color Contexts conditions. Eye movement 
reaction times were calculated relative to trial 
onset (i.e., when the central cue first appeared 
on the screen). (B) Infants’ generalization 
scores, which were calculated by subtracting 
their average eye movement reaction times to 
the cartoon reward during the generalization 
phase from their average reaction times during 
the learning phase of the abstract rule learning 
task.   

Fig. 4. The relation between infants’ generalization performance and changes in attention biases to shape information in the Shape Contexts condition (A) and to 
color information in the Color Contexts Condition (B). 
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wavelength relative to the 10-s baseline prior to block onset, during 
which a black screen with a white fixation cross was presented. Next, we 
used the modified Beer-Lambert law to calculate changes in the con-
centration of oxygenated and deoxygenated hemoglobin from the 
changes in optical density. Afterwards, we screened for motion artifacts 
by identifying signal fluctuations 5 M over a 0.5-s range in each channel 
(Emberson et al., 2015; Lloyd-fox et al., 2009). Finally, changes in 
oxygenated hemoglobin (relative to the 10-s baseline) in each of the 6 
source-detector channels were exported for subsequent analysis by 
averaging across every 4-s of each 32-s block starting 4-s after block 
onset to remove serial autocorrelation in the residual errors and to 
eliminate the need to make assumptions about the shape of the hemo-
dynamic response in subsequent analyses. We limited analyses to the 
period starting 4 s after stimulus onset based on previous studies that 
have seen that this is the typical delay in the hemodynamic response 
function (HRF) initiation in infants (Taga and Asakawa, 2007; Werchan 
et al., 2016). This created a total of 7 time intervals for each of the two 
32-s blocks during the learning phase of the abstract rule learning task. 

The 6 source-detector channels were divided and averaged into three 
regions of interest for subsequent data analysis, with the two left frontal 
channels corresponding to left lateral PFC, the two right frontal channels 
corresponding to right lateral PFC, and the two posterior occipital 
channels corresponding to visual association cortex. These regions of 
interest were verified by estimating measurement sensitivity to these 
cortical regions (based on the positioning of the optode array referenced 
to standardized 10–20 coordinates as described above) using Atlas-
Viewer NIRS image reconstruction tools (Aasted et al., 2015). We veri-
fied that mean levels of cortical activation for each region were normally 
distributed through visual inspection and statistically using the 
Kolmogorov-Smirnov test for normality, all ps > 0.130. 

6.6. fNIRS functional connectivity 

To examine functional interactions between PFC and visual cortex, 
we first calculated an undirected measure of functional connectivity 
based on temporal correlations between regions of interest (Friston, 
2011). Following the methods in prior fNIRS work exploring task-based 
functional connectivity in infants (Homae et al., 2011; Keehn et al., 
2013; Werchan et al., 2018), we computed a Pearson’s r value for each 
infant by temporally correlating the PFC activations with the visual 
cortex activations across the seven averaged time intervals during the 
rule learning task. We then converted the r values to z scores using 
Fischer’s z transformation to make their statistical distributions close to 
normal. 

In addition to this undirected measure of functional connectivity, we 
also examined directed functional connectivity by applying Granger 
causality to the raw time courses of PFC and visual cortex activations. 
Granger causality is based on the concept that signal 1 affects or in-
fluences signal 2 if the predictions of signal 2 based on the past values of 
signal 1 are better than predictions of signal 2 based on past values of 
signal 2 alone (Barnett and Seth, 2014). For example, in the context of 
brain connectivity, if Granger causality for Region 1→Region 2 is greater 
than Region 2→Region 1, then this indicates a stronger functional in-
fluence from region 1 on region 2. Granger causality has been shown to 
be a suitable method for studying directional functional connectivity on 
cerebral blood oxygen response time courses (e.g., Goebel et al., 2003; 
Roebroeck et al., 2005; Seth et al., 2015; Wen et al., 2013). 

We analyzed directed functional connectivity analyses by referring 
to prior fNIRS studies (e.g., Arizono et al., 2016; Medvedev, 2014; Sun 
and Wang, 2019; Zhou et al., 2016). Briefly, Granger causality values 
between the PFC and visual cortex were calculated for each infant using 
multivariate autoregressive (AR) modeling on the raw hemodynamic 
time courses, which was implemented using the MVGC MATLAB toolbox 
(Barnett and Seth, 2014). To meet assumptions of AR models, the raw 
time courses for the hemodynamic responses were differenced prior to 
analysis to remove non-stationarity in the signals. The optimal model 

order was chosen using the Bayesian information criterion, model sta-
tionarity was checked by Augmented Dickey Fuller test, and model 
validity and consistency were verified using the Durbin-Watson test for 
autocorrelated residuals as implemented in the MVGC MATLAB toolbox 
(Barnett and Seth, 2014). 

7. Experiment 2 results 

7.1. Behavioral results 

We first examined the distribution of infants’ baseline attention 
biases, which again indicated that infants had a greater initial attention 
bias to color over shape, t(29) ¼ 3.703, p ¼ 0.001, M ¼ 183.12, SD ¼
270.83. We then examined infants’ eye movement reaction times across 
learning trial bins, which revealed a main effect of Learning Trial Bin, F 
(3,87) ¼ 2.698, p ¼ 0.051, indicating that infants’ were learning the 
stimulus-response associations with trial exposure. 

We next examined whether infants generalized the stimulus- 
response associations to novel shape contexts, as indexed by faster re-
action times during learning relative to generalization. We conducted a 
one-sample t test comparing infants’ generalization scores (calculated as 
a difference score of average reactions times during Learning – Gener-
alization) to chance (0), which revealed that infants’ eye movement 
reaction times were significantly faster during generalization relative to 
learning, t(29) ¼ 4.749, p < 0.001 (Fig. 5). This provides evidence that 
infants learned an abstract rule and generalized this rule to a novel shape 
context. Critically, we also found that individual differences in infants’ 
generalization scores were correlated with the change in infants’ 
attention bias to shape from baseline to post-test, r(30) ¼ 0.522, p ¼
0.003 (Fig. 6). These results are consistent with the findings from 
Experiment 1 in a larger independent sample of infants. Moreover, in-
fants’ generalization performance was more robust than infants assigned 
to the Shape Contexts condition in Experiment 1. 

7.2. fNIRS results 

We next examined how infants’ cortical activity during the two 32-s 
blocks of the learning phase of the abstract rule learning task related to 
individual differences in infants’ behavioral generalization scores and 
the change in infants’ attention bias to shape, measured by relative 
looking time. We first conducted an omnibus repeated-measures 
ANCOVA on infants’ cortical activations using Region (Visual Cortex, 
Left PFC, Right PFC), Learning Block (Block 1, Block 2), and Time In-
terval (seven 4-s intervals) as within-subjects factors and infants’ 
Generalization scores and Attention Bias Change scores as continuous 

Fig. 5. (A) Infants’ average eye movement reaction times to the correct loca-
tion during the learning and generalization phases of the abstract rule learning 
task in Experiment 2. (B) Infants’ generalization scores, which were calculated 
by subtracting their average eye movement reaction times to the cartoon 
reward during the generalization phase from their average reaction times 
during the learning phase of the abstract rule learning task. 
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variables. This analysis revealed a significant Region x Learning Block x 
Time Interval x Generalization x Attention Bias Change interaction, 
Wilks’ lambda ¼ 0.296, F(12,15) ¼ 2.975, p ¼ 0.025. There were no 
other significant main effects or interactions, all ps > 0.143, all Fs <
1.787. 

We followed up on this significant interaction by examining each of 
the two 32-s learning blocks separately (Bonferroni corrected alpha ¼
.025). A repeated-measures ANCOVA using Region (Visual Cortex, Left 
PFC, Right PFC) and Time Interval (seven 4-s intervals) as within- 
subjects factors and infants’ Generalization scores and Attention Bias 
Change scores as continuous variables showed no significant main ef-
fects or interactions in the second 32-s block of the learning task, all ps >
0.092, all Fs < 2.074. This same test on the first 32-s block of the 
learning task, however, revealed a significant Region x Attention Bias 
Change interaction, Wilks’ lambda ¼ 0.582, F(2,25) ¼ 8.992, p ¼ 0.001, 
and a significant Region x Time x Generalization x Attention Bias 
Change interaction, Wilks’ lambda ¼ 0.294, F(12,15) ¼ 3.008, p ¼
0.024. Planned Helmert contrasts indicated that the visual cortex 
differed from the right and left PFC in the Region x Attention Bias 
Change interaction, F(1,26) ¼ 12.848, p ¼ 0.001, and in the Region x 
Generalization x Attention Bias Change interaction, F(1,26) ¼ 4.695, p ¼
0.040. Additionally, the right PFC differed from the left PFC in the Re-
gion x Generalization interaction, F(1,26) ¼ 4.945, p ¼ 0.035. No other 
significant effects or interactions were found, all ps > 0.141, all Fs <
2.301. We followed up on these interactions by examining activations 
across Time Interval separately by region. 

7.2.1. Visual cortex activation 
A repeated-measures ANCOVA on infants’ visual cortex activations, 

including infants’ Attention Bias Change scores and Generalization 
scores as continuous variables, revealed a significant Time x Attention 
Bias Change interaction, Wilks’ lambda ¼ 0.385, F(6,21) ¼ 5.587, p ¼
0.001. This interaction indicates that lower levels of mean visual cortex 
activation during the first 32-s block of learning were related to a greater 
change in infants’ attention biases to shape after the rule learning task 
relative to baseline, r(30) ¼ -0.398, p ¼ 0.029. However, visual cortex 
activation was not correlated with infants’ generalization scores during 
the rule learning task, r(30) ¼ 0.095, p ¼ 0.618. 

7.2.2. PFC activation 
A repeated-measures ANCOVA on infants’ Left PFC activations, 

including infants’ Generalization scores as continuous variables, did not 
reveal a significant interaction between Left PFC activation and Gener-
alization, Wilks’ lambda ¼ 0.880, F(6,21) ¼ 0.476, p ¼ 0.819. However, 
this same analysis on infants’ Right PFC revealed a significant interac-
tion between Right PFC activation and Generalization, Wilks’ lambda ¼
0.557, F(6,21) ¼ 2.786, p ¼ 0.037. This interaction indicates that higher 
levels of mean right PFC activation during the first 32-s block of learning 

was related to better subsequent generalization performance, r(30) ¼
0.480, p ¼ 0.007. However, mean levels of PFC activation did not relate 
to the change in infants’ attention biases after learning relative to 
baseline, r(30) ¼ 0.191, p ¼ 0.312. 

7.2.3. Functional connecitivity 
Finally, we examined how functional connectivity between the right 

PFC and visual cortex during the first 32-s block of learning related to 
individual differences in subsequent generalization performance, as well 
as the change in infants’ attention biases to shape. A one-sample t test 
indicated that infants’ functional connectivity correlational values were 
significantly greater than 0, t(29) ¼ 2.115, p ¼ 0.043. We then analyzed 
how individual differences in infants’ functional connectivity correla-
tional values related to subsequent behavioral Generalization scores and 
Attention Bias Change scores. Results indicated that higher functional 
connectivity was related to better generalization performance, r(30) ¼
0.456, p ¼ 0.011, but did not correlate with the change in infants’ 
attention bias to shape, r(30) ¼ 0.200, p ¼ 0.290. 

We followed up on these analyses by examining the directionality of 
functional connectivity between the right PFC and visual cortex, indexed 
by Granger causality (GC) values for right PFC→Visual Cortex and for 
Visual Cortex→right PFC. A paired-samples two-tailed t test indicated 
that, at a group level, GC values for right PFC→Visual Cortex (M ¼
0.018, SD ¼ 0.010) were not different than GC values for Visual Cor-
tex→right PFC (M ¼ 0.021, SD ¼ 0.011), t(29) ¼ 1.360, p ¼ 0.184. 

We next examined how individual differences in right PFC→Visual 
Cortex and Visual Cortex→right PFC GC values related to individual 
differences in subsequent behavioral generalization scores. We found 
that GC values for Visual Cortex→right PFC did not correlate with in-
fants’ generalization performance, r(30) ¼ -0.239, p ¼ 0.203. Critically, 
however, our results revealed that higher GC values for right PFC→Vi-
sual Cortex were correlated with better subsequent generalization per-
formance, r(30) ¼ 0.415, p ¼ .022 (Fig. 7; Bonferroni corrected alpha ¼
.025). These results suggest that the extent of the right PFC’s functional 
influence over visual cortex during abstract rule learning is related to 
subsequent behavioral generalization performance. Taken together, 
these findings add further support, in combination with the behavioral 
data, that the change in infants’ attention bias to the relevant higher- 
order feature was related to the efficacy of abstract rule learning. 

8. General discussion 

Visual attention is a fundamental capacity that supports the flexible 
selection of information based on relevant rules and goals that guide 
behavior across time and contexts. In adults, top-down visual attention 
is thought to be mediated by functional interactions between the PFC 
and visual cortex (Gilbert and Li, 2013; Baluch and Itti, 2011; Paneri and 
Gregoriou, 2017). Yet, it is unclear whether similar mechanisms operate 

Fig. 6. Relation between infants’ generalization performance during the rule 
learning task and change in attention bias to shape in Experiment 2. 

Fig. 7. Relation between infants’ directed functional connectivity from the 
right PFC to visual cortex during learning and subsequent generalization 
performance. 
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in infants. We recently showed that 8-month-old infants can use the PFC 
to structure visual inputs into abstract rules (Werchan et al., 2016). In 
addition, other work has found that infants are capable of using 
top-down knowledge to guide visual search as young as 6 months of age 
(Tummeltshammer and Amso, 2018). Across two experiments, our 
behavioral data here provide support that 9-month-old infants can use 
top-down knowledge rapidly acquired through abstract rule learning 
mechanisms to modulate visual attention of learned 
behaviorally-relevant visual features. 

We presented infants with an abstract rule learning task where they 
could use a simple visual feature (either color or shape) as a higher-order 
context to organize visual inputs into rules for learning. Our results 
indicated that infants who showed better generalization performance, as 
measured by faster reaction times during the generalization phase 
relative to the learning phase of the abstract rule learning task, also 
showed a greater a change in their attention biases, from baseline to 
post-learning, to the visual feature that cued these abstract rule struc-
tures. Additionally, we found that infants showed similar learning rates 
and changes in attention biases to learned behaviorally-relevant visual 
features irrespective of condition assignment. However, it was unclear 
from this sample whether infants assigned to the Shape Contexts con-
dition generalized rule learning to a novel shape context. We thus 
repeated the Shape Contexts condition with a larger sample of infants in 
Experiment 2, where we observed similar generalization performance as 
infants assigned to the Color Contexts condition. Thus, these results 
provide behavioral evidence that infants learned and generalized an 
abstract rule, which subsequently influenced infants’ visual selection 
and attentional biases towards information relevant for learning. 

We also examined the neural underpinnings of these processes by 
using fNIRS to record infants’ frontal and visual cortex activity during 
learning. We found that infants’ who had lower mean levels of visual 
cortex activation during the first 32-second block of the rule learning 
task also had greater subsequent changes in their attention biases to 
shape. This is consistent with prior work implicating reduced visual 
cortex activation over the course of perceptual learning, likely due to 
sharpened tuning of neuronal representations (e.g., Mukai et al., 2007). 
Moreover, we saw that infants with higher mean levels of right PFC 
activation during the first 32-second block of the rule learning task 
demonstrated better subsequent generalization performance. These 
findings mirror prior work implicating increased right dorsolateral PFC 
activation due to working memory processes in similar rule learning 
tasks in both infants (Werchan et al., 2016) and adults (Collins et al., 
2014). We also found that these effects were specific to the first 32-sec-
ond block of the rule learning task, which is consistent with prior work 
indicating that PFC involvement is more pronounced in early stages of 
learning, which can consist of as few as 8 trials, relative to late stages of 
learning (see Kelly and Garavan, 2005, for a review). It is also consistent 
with prior work indicating that learning and transfer of abstract rules 
stabilizes during the early trials of a task (e.g., Bhandari and Badre, 
2018; Bhandari and Duncan, 2014; Cole et al., 2011). 

We interpret these findings as preliminary evidence that greater PFC 
influence over visual cortex during initial rule learning might support 
better learning and subsequent generalization of abstract rules orga-
nizing visual inputs into predictable sequences. In turn, better learning 
and generalization of abstract rules may then lead to a greater attention 
bias to the relevant feature that acts as a higher-order context cueing 
these abstract rule structures. In support of this interpretation, our re-
sults also revealed that individual differences in infants’ functional 
connectivity between the right PFC and visual cortex during the first 32- 
s block of learning was correlated with the efficacy of subsequent 
generalization performance, such that infants with higher functional 
connectivity showed better generalization. Moreover, Granger causality 
analyses assessing the directionality of these functional interactions 
indicated that greater PFC influence on visual cortex was related to 
better generalization performance. These results are consistent with 
prior work implicating functional interactions between the PFC and 

visual cortex in modulating visual processing in adults (Corbetta and 
Shulman, 2002; Gazzaley et al., 2007; Kastner and Ungerleider, 2000; 
Morishima et al., 2009; Rossi et al., 2009; Taylor et al., 2007). 

Prior work shows that resting state functional connectivity in human 
infants is dominated by short-range intra-cortical connections relative to 
long-range intercortical connections (Fransson et al., 2011; Gao et al., 
2011), which makes our fNIRS results somewhat surprising. Yet, despite 
long-range functional connectivity being relatively immature in infancy, 
these long-range anatomical connections are in place at birth (Gold-
man-Rakic, 1987), and functional connectivity within long range cor-
ticocortical connections is evident by 6–9 months of age (Fransson et al., 
2007). In addition, a recent study reported similar behavioral findings 
showing that top-down knowledge guides visual search in simple spatial 
arrays in infants as young as 6 months of age (Tummeltshammer and 
Amso, 2018). Thus, our behavioral and neuroimaging findings provide 
preliminary evidence that corticocortical connections between the PFC 
and visual cortex might be involved in top-down guidance of visual 
attention in infants. These findings add to growing behavioral evidence 
showing that infants can use top-down knowledge to guide visual 
attention, as well as add new insights into the functional circuitry that 
support these processes in infants. However, it is important to note that 
while examining functional connectivity analysis is informative for 
describing the neural networks that may be involved in top-down 
modulation of visual attention in infants, it is a correlational measure 
that cannot be used to make statements of causality. 

In sum, our findings show that infants can rapidly acquire top-down 
knowledge using abstract rule learning mechanisms, and that this top- 
down knowledge subsequently influences infants’ visual selection and 
attention biases to visual features relevant for learning. This initial 
demonstration of top-down knowledge influencing visual attention in 
infants may help infants learn to flexibly select features from the clut-
tered visual world that support adaptive behavior and guide learning in 
new contexts. These findings provide new mechanistic insights into how 
the infant brain learns to efficiently direct attention to information that 
is most relevant for learning and behavior over ontogenetic 
development. 
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